Гидравлический удар

Гидроудар в системе водоснабжения возникает при отсутствии пропускной способности трубы в результате её закупорки воздушным пузырём или твёрдым предметом, снижающим проходимость жидкости на определённом участке. Работающий нагнетательный насос способствует росту давления жидкости до критических показателей. В результате чего происходит разгерметизация трубопровода в результате разрыва трубы или разъединения стыкующих элементов.

Серьёзными последствиями грозят повреждения трубопровода в следствии гидроудара:

  • необходимость ремонта дефектного участка;
  • длительное просушивание помещения;
  • замену деревянной мебели;
  • замену облицовочных древесных материалов, гипсокартонных переборок.

Гидроудар в циркуляционной системе коммуникаций является сопутствующим явлением при запуске насоса, перекачивающего жидкость. Вибрация, как при ручном, так и автоматическом запуске нагнетающего насоса, передаётся трубам, что так же служит причиной разгерметизации систем жизнеобеспечения дома.

Примерно такие же перегрузки испытывают стенки канализации при начале слива воды из стиральной или посудомоечной машины и автономная система отопления при очередном цикле подачи жидкости к радиаторам. Разница заключается в силе давления на стенки труб при запуске и при постоянном цикле подачи.

Какие последствия гидроудара могут быть для системы отопления

Довольно часто после запуска системы отопления с приходом холодов в трубах можно услышать периодические щелчки и стук. Обратите внимание, что если подобные явления возникают слишком часто, это может привести к необходимости проведения срочного ремонта системы отопления. Связана такая необходимость может быть с тем, что гидроудар в трубах иногда приводит к прорыву теплоносителя, неисправности отопительного оборудования или повреждениям расширительного бачка.

Поскольку самостоятельно определить возможные результаты воздействия ударной волны на систему довольно сложно, обычно для этих целей приглашают специалистов, чьи услуги стоят достаточно дорого. Поэтому настоятельно рекомендуем перед началом отопительного сезона провести диагностику отопительного контура и выявить все возможные недостатки.

Наиболее распространенной причиной гидроударов в отопительном контуре является различное сечение используемых труб. Поскольку на участке трубопровода с меньшим диаметром создается постоянное повышенное трение, оно мешает теплоносителю свободно двигаться по системе. Следовательно, в трубах постоянно слышится гудение, шипение или щелчки из-за повышенного давления.

Если в вашей системе отопления присутствует такая проблема, ее придется переделывать. В противном случае, по прошествии времени неприятности с ней возникнут снова.

Способы предотвращения гидроударов

Сразу после проведения установки или капитального ремонта системы отопления следует позаботиться о недопущении гидроударов. Добиться этого можно с помощью корректной настройки работы контура. Если все сделать правильно, вы минимизируете последствия ошибок монтажа или планировки всей системы.

Если вы планируете провести обновление и усовершенствование отопления в доме, для этих целей стоит выбирать прочные и износостойкие комплектующие и расходные материалы. При этом нужно обращать внимание на эксплуатационные характеристики деталей.

Чтобы не допустить резкого роста давления в трубах, следует дополнить отопительный контур компенсаторными устройствами – гидроаккумуляторами. Они поглощают излишний объем воды, предотвращая образование пробок и гидроударов.

Кроме того, удобным устройством, контролирующим уровень давления внутри системы, является электрический насос. Он позволяет подавать воду в трубопровод постепенно, регулируя напор в случае малейших колебаний давления.

Итак, мы рассказали об основных причинах и последствиях гидравлических ударов в трубопроводах. Надеемся, что данная информация позволит вам избежать возможных проблем и материальных затрат.

Гидроудар – неполадка или неизбежность?

Гидроудар в системе водоснабжения бывает двух видов, в сторону увеличения или понижения давления. Это можно сравнить с артериальным давлением человека. При отрицательном гидравлическом давлении жидкости на стенки труб угрозы не существует, в этот момент наблюдается снижение напора воды.

Много серьёзнее обстоят дела при значительном повышении давления в водопроводе, спровоцированном затором на одном или нескольких участках. Причиной этого могут стать:

  • резко открытая заглушка, запорный кран;
  • скопившийся в процессе простоя системы воздух;
  • разгерметизация, получившаяся в результате неправильной консервации системы перед перерывом в её эксплуатации.

Определить эту неполадку можно на слух, трубы начинают издавать устрашающие звуки. Характеристики и громкость звуков отличаются в зависимости от материала, из которого изготовлены трубы.

Как услышать и предотвратить угрозу

В металлопластиковых и полипропиленовых трубах есть звукоизоляционный слой. Чрезмерное давление внутри системы – борьба воды с воздушной пробкой, по восприятию на слух больше напоминает громкое урчание сытого кота или раздражённого кишечника. Металлические и медные трубы усиливают звук, транслируя его по всей системе. Чем дальше от его источника, тем сильнее и протяжнее скрежетание.

Лучшим способом снятия напряжения с внутренней поверхности стенок трубопровода можно считать открытый кран, если причиной слабой проходимости воды стала воздушная пробка, образовавшаяся при резкой приостановке подачи воды. При выходе жидкость будет насыщена пузырьками воздуха.

Внимание! Чем больше запорных кранов в системе, тем надёжнее защита. Перекрытие прохода жидкости к повреждённому участку, а не по всей протяжённости трубопровода сокращает зону риска для гидроудара.

Уязвимость труб при гидроударе

Не открытый вовремя кран или не отключённый в экстренной ситуации нагнетающий насос – это предпосылка к тому, что вода дырочку найдёт и расширит. У каждого вида труб есть свои слабые места.

  • Бесшовные металлические чаще повреждаются на сгибах, чем круче угол, тем сильнее риск.
  • Швы на металлопрокатных изделиях не рассчитаны на давление, превышающее то, что указано в маркировке.
  • В металлопластиковых водопроводах зоны риска находятся в местах стыков с фитингами – тройниками, запорными кранами и угловыми соединениями.
  • Полипропиленовые более устойчивы за счёт большего диаметра и паяных углов, но зоны риска те же, что и в металлопластиковом водопроводе.

Наиболее подвержены повреждениям при гидроударе трубы с внутренним диаметром меньше 10 мм.

Слабое место сварных систем из нержавеющей стали – края соединяемых элементов, на которые воздействовала плазма. Ухудшение технических данных металла – это более весомый аргумент в отказе от использования нержавейки в монтаже автономного водопровода, чем высокая стоимость материала. Радужные разводы, относимые профессионалами к цветам побежалости, не всегда свидетельствуют о перегреве стали. Большую опасность представляют выделяющиеся оксиды. В местах их выделения даже нержавеющая сталь подвергается коррозии.

Возможные причины нарастания гидравлического давления, как его избежать

Эксплуатация автономного водопровода в режиме non-stop практически не производится. Насос запускается автоматически при необходимости подачи очередной порции воды в дом. Если перед этим не было никаких аварийных ситуаций, то перегрузка будет кратковременной. Повреждение может вызвать только естественный износ трубопровода.

Если предыдущее отключение насоса было произведено в аварийном режиме, то это может повлечь образование преграды воде в виде воздушной пробки. Тоже происходит и при резком перекрытии запорной арматуры. Когда мастер предлагает установить барашковый кран вместо шарового, в этом есть свой резон.

Краны старого образца дают реальную возможность плавно перекрыть воду и также постепенно открыть её доступ в систему при последующем включении насоса после проведения профилактических или ремонтных работ. Пожалуй, это лучшая защита труб от повышенного давления на стенки.

При длительном перерыве в работе водопровода, частично находящегося за пределами здания, в трубах может оказаться лёд. Эта преграда вполне материальна и более опасна, чем воздух. Сход снега с полей – не критерий того, что вода, находящаяся под землёй, полностью растаяла.

При сильном понижении температуры воздуха приводит к замерзанию воды внутри труб даже в действующих автономных водопроводах. Защита от гидроудара в системе водоснабжения, при пуске в сильные морозы, заключается в ее максимальном утеплении. В районах с умеренным климатом для защиты бывает достаточно установки утеплённых коробов, препятствующих промерзанию. В районах, где этой меры может оказаться недостаточно, используется электрический кабель для подогрева. Прокладывается он по всей длине подземной части водопровода.

Защита водопровода от перегрузок внутри дома

Основной защитой длинного участка от повреждений внутри дома стали компенсаторы сильфонного типа. Этот элемент конструкции, за счёт предусмотренного изготовителем растяжения, предотвращает деформацию и разрыв труб при гидроударе. Особенность компенсаторов заключается в соединительной функции основных деталей трубопровода и герметизации системы водоснабжения.

Если есть возможность сделать водопровод с меньшим количеством стыков, врезок, то мастера пользуются способом самокомпенсации системы. Он заключается в изгибах трубы, что естественным образом гасит давление нагнетаемой насосом жидкости. Метод защиты от гидроударов в системе водоснабжения, без использования дополнительных деталей, хорошо работает на участках трубопровода малого метража. Там, где нет больших температурных перепадов, деформация от сжатия или растяжения материалов трубам не грозит.

Для участков труб, контактирующих с горячей водой, используются и другие компенсаторы гидравлического давления:

  • п-образные;
  • линзовые;
  • сальниковые.

Подбор компенсаторов и методов гашения гидроудара производится на стадии составления проекта. Но и в процессе эксплуатации всегда есть возможность усовершенствования автономных систем, водоснабжения и отопления. Что чаще всего это бывает в процессе установки дополнительных сантехнических точек.

По статистике, в 60 % случаев прорыв водопровода в частных домах происходит из-за гидроудара. Что это такое и как избежать досадных аварий, вы узнаете из этой статьи.

Для начала разберемся, что такое гидроудар. Гидроудар – резкое изменение давления в трубах.

Гидравлический удар принято разделять на два вида.

  • Положительный – давления резко повышается. Это происходит при быстром закрытии водопроводного крана или включении насоса.
  • Отрицательный – падение давления из-за открытия крана или отключения насоса.

Рассмотрим подробнее гидроудар первого типа, так как он представляет наибольшую опасность для системы водоснабжения.

Представьте, что вы только что открыли водопроводный кран и использовали воду для своих целей (вымыли посуду, умылись и так далее). Когда вода больше не нужна, вы, естественно, закрываете кран.

Что при этом происходит в системе водоснабжения? Вода по инерции какое-то время течет по трубам с прежней скоростью потока, при этом сталкивается с препятствием (кран закрыт). И, «спотыкаясь» о преграду, поток возбуждает обратную волну. А поскольку система водоснабжения герметична, обратная волна сталкивается с водной массой, идущей навстречу. В результате получается удар определенной силы, который ищет выхода в окружающей среде (то есть в трубах).

При небольшой силе толчка удар гасится трубопроводом. При мощном гидроударе или ветхом состоянии системы происходит авария, разрыв водопровода.

Среди прочих причин гидроудара – резкое включение насоса, перебои в электроснабжении, аварийное отключение насоса, срабатывание систем защиты трубопровода. Во всех этих случаях давление в водопроводе резко меняется, что влечет за собой деформацию труб, вплоть до их разрыва. Надо сказать, что даже процессы коррозии и иные чрезвычайные обстоятельства не имеют такого влияния на водопровод, как гидроудары.

Чем грозит гидроудар в системе водоснабжения?

Кроме разрушения водопроводной системы, которая всегда выливается в большие денежные траты, гидроудар грозит затоплением жилища, порчей имущества, бытовых приборов, и, самое страшное, ожоговым травматизмом. Именно поэтому рекомендуем вам внимательно отнестись к проблеме гидроударов в системе водоснабжения и максимально обезопасить себя и своих домочадцев.

Как узнать, есть ли гидроудары в системе?

Диагностировать наличие гидроударов в системе просто. Первые признаки – щелчки, постукивания и прочий шум, который будет слышен при открытии и закрытии крана. Большинство из нас не обращают внимания на эти звуки, а ведь именно они первыми свидетельствуют о чрезмерных нагрузках системы.

Компактная защита от обширных проблем

Главный принцип амортизатора довольно прост – максимально снизить силу гидроудара до такой, которая не влечет разрушительных действий для гидросистемы и устройств. Для этого его устанавливают между запорным краном и другими устройствами.

Сегодня на рынке представлены амортизаторы двух типов – мембранные и поршневые. Они хоть и различаются по внешнему виду и принципу работы, но одинаково эффективно справляются со своей задачей. В первом случае жидкость воздействует на мембрану, а та, в свою очередь, давит на сжатый воздух, который находится в камере под мембраной, таким образом погашая резкие перепады давления. Второй вариант состоит из поршня, который принимает на себя скачки давления воды, и пружины, которая их гасит. Оба типа могут монтироваться в систему как горизонтальным, так и вертикальным способом. Изготавливают их из различных материалов, чаще всего — из латуни или нержавеющих металлов. В наличии имеются различные модели с диаметром для любых систем.

Выбирая амортизатор, следует также обратить внимание на характеристики и показания к эксплуатации. Существуют варианты для работы с горячей, холодной водой и универсальные. Однако, все они имеют требования к температуре жидкости. Дополнительным критерием является максимальное давление, которое способен выдержать амортизатор, в некоторых моделях оно может доходить до 40 Бар.

Ну и не следует забывать, что максимальная эффективность от амортизатора, а вместе с тем, и защита систем приходит вместе с комплексом других мероприятий, а именно – повышением диаметра входной трубы и установкой редуктора.

Амортизатор ударов — это отличный компенсатор гидроударов в системе водопровода и его установка позволит существенно обезопасить другие приборы и повысить их срок службы. Но, покупая данное устройство, следует поинтересоваться у консультантов дополнительными нюансами в его работе.

Сантехническое Эльдорадо

Если Вы решили купить компенсатор (гаситель) для защиты от гидроудара (гидроударов), советуем заглянуть в интернет-магазин santehmaster.ua. Здесь Вы найдете не только искомый товар, но и превосходное обслуживание вкупе с высококвалифицированным персоналом, который поможет Вам сделать правильный выбор. У нас возможна оплата как наличным, так и безналичным способом, а при необходимости, можем доставить товар по Киеву и Украине. В качестве бонусов для Вас присутствует система отличных скидок, уникальных предложений. У нас всегда приятно делать покупки!

Главная защита – соблюдение правил эксплуатации

Не обязательно знать, что такое гидроудар в системе водоснабжения, главное уметь его предотвратить:

  1. Перед первичным запуском водопровода необходимо стравить воздух.
  2. После зимнего периода, если скважина подачи воды не использовалась, нужно обезопасить её от разрыва под воздействием льда. Для этого в колонку, к которой подключен насос, заливают горячую воду.
  3. Чтобы избежать воздушной пробки при подключении оборудования после длительного перерыва, при стабильно плюсовой температуре, повысить уровень до рабочего состояния можно холодной водой.
  4. Перед запуском насоса требуется проверить, все ли перекрывающие краны (вентили) открыты.
  5. Если конструкция электродвигателя позволяет регулировать режим подачи, этим следует воспользоваться, повышая давление в системе постепенно.

К поломкам в системе водопровода приводит гидроудар, вибрация, неправильная сборка трубопровода, неверно проведённые расчёты при подборе диаметра к мощности оборудования, обеспечивающего циркуляцию жидкости. Статистика показывает, что 60% повреждений вызваны систематическими или разовыми резкими скачками давления в трубах.

Пузыри на трубе

Характерное потрескивание в водопроводных трубах – это сигнал о неполадке. В системе есть предпосылка к разгерметизации. Возможно, что пластик имела механическое повреждение, невидимое до момента установки. Вибрация, создаваемая насосом, способствует её расширению. Достаточно небольшого увеличения давления в трубопроводе, для того, чтобы проблема стала явной.

Появление на многослойных трубах холодного водоснабжения пузырей напрямую указывает на слабое звено в системе. Участок, на котором проявились последствия подскакивания давления, подлежит срочной замене. Карман, созданный водой, непременно прорвётся. Значительно проще заменить отрезок трубопровода, не дожидаясь потопа при котором придётся экстренно перекрывать задвижки в аварийном режиме, что может послужить причиной следующего гидроудара.

Пузыри на трубах горячего водоснабжения могут вообще не говорить о повреждении, если при монтаже использовались армированные трубы из полимера. Особенности строения армированной трубы заключаются в том, что главную часть и внешний слой разделяет металлическая фольга, зафиксированная двумя слоями игольчатого клея.

При нагревании материалы дают разную степень растяжения. Внешний слой проницаем для воздуха, а при неоднократном остывании его материал подвергается деформации, создавая карманы для образовавшегося между ним и фольгой конденсата. Опасности разрыва, при штатном давлении, в этом случае не существует.

Для чего нужен проект водопровода

Протяжённость водопровода даже в частных домах разная. Каждый метр на прямой траектории добавляет углу наклона трубы определённый градус. В первую очередь это необходимо для того, чтобы вода не застаивалась.

Прямой и тупой угол изгиба с разной степенью эффективности гасит гидроудар, который может стать причиной поломки дорогостоящего оборудования:

  • силового агрегата;
  • водонагревателя;
  • 2-контурного котла, обеспечивающего не только подачу воды к умывальнику, но и к системе «тёплый пол».

Чёткая геометрия хороша для исполнения декоративной отделки. При подключении сантехнических точек прямые линии труб не всегда актуальны. Каждый изгиб и угол наклона неоднократно просчитывается и выверяется проектировщиками.

Стоимость проекта дома с коммуникационными развязками незначительно дороже того, в котором удобства не предусмотрены. Во многих частных домах закладка трубопровода начинается ещё при закладке фундамента. Поэтапная сборка всех узлов в строгом соответствии со строительным планом – это лучшая защита дома от преждевременного разрушения, а водопровода от гидроудара. На расчётах экономить не рекомендуется, равно как и на найме профессиональных сантехников.

Если уж случилась беда, и произошла разгерметизация трубы отопления или теплого пола, то необходимо срочно произвести ремонт поврежденного участка. Обнаружить скрытую протечку в полу, стене или в земле можно с помощью тепловизора. Компания «Sohranim-teplo» занимается поиском утечек в системе отопления и на протяжении более чем десяти лет успешно помогает людям в решении данной проблемы.

  • Техподдержка
  • Статьи
  • Квартирный гаситель гидравлических ударов

Квартирный гаситель гидравлических ударов

Общие сведения о гидравлическом ударе

Гидравлический удар – это скачкообразное изменение давление жидкости, протекающей в напорном трубопроводе, возникающее при резком изменении скорости потока. В более развернутом смысле, гидравлический удар представляет собой быстротечное чередование «скачков» и «провалов» давления, сопровождающееся деформацией жидкости и стенок трубы, а также акустическим эффектом, похожим на удар молотком по стальной трубе. При слабых гидравлических ударах звук проявляется в виде «металлических» щелчков, однако даже при таких, казалось бы, незначительных ударах давление в трубопроводе может возрастать весьма значительно.

Стадии гидравлического удара можно проиллюстрировать на следующем примере (рис.1): пусть на конце квартирного трубопровода, присоединенного к домовому стояку, установлен однорычажный кран или смеситель (именно такие смесители позволяют относительно быстро перекрывать поток).

Рис.1. Стадии гидравлического удара

При перекрытии крана происходят следующие процессы:

  1. Пока кран открыт, жидкость движется по квартирному трубопроводу со скоростью «ν «. При этом в стояке и квартирном трубопроводе давление одинаковое (p).
  2. При перекрытии крана и резком торможении потока кинетическая энергия потока переходит в работу деформации стенок трубы и жидкости. Стенки трубы растягиваются, а жидкость сжимается, что ведет к увеличению давления на величинуΔp (ударное давление). Зона, в которой произошло увеличение давления называется зоной сжатия ударной волной, а ее крайнее сечение называется фронтом ударной волны. Фронт ударной волны распространяется в сторону стояка со скоростью «с». Здесь хотелось бы отметить, что допущение о несжимаемости воды, принимаемое при гидравлических расчетах, в данном случае не применяется, т.к. реальная вода – сжимаемая жидкость, имеющая коэффициент объемного сжатия 4,9х10-10 1/Па. То есть при давлении 20 400 бар (2040 МПа) объем воды уменьшается в два раза.
  3. Когда фронт ударной волны дойдет до стояка, вся жидкость в квартирном трубопроводе окажется сжатой, а стенки квартирного трубопровода – растянутыми.
  4. Объем жидкости в домовой системе гораздо больше, чем в квартирной разводке, поэтому, когда фронт ударной волны доходит до стояка, избыточное давление жидкости большей частью сглаживается за счет расширения сечения и включения в работу общего объема жидкости в домовой системе. Давление в квартирном трубопроводе начинает выравниваться со стояковым давлением. Но при этом квартирный трубопровод за счет упругости материала стенок восстанавливает свое первоначальное сечение, сжимая жидкость и выдавливая ее в стояк. Зона снятия деформации со стенок трубопровода распространяется к крану со скоростью «с».
  5. В момент, когда давление в квартирном трубопроводе будет равно первоначальному, также как и скорость жидкости, направление потока будет обратное («нулевая точка»).
  6. Теперь жидкость в трубопроводе со скоростью «ν » стремится «оторваться» от крана. Возникает «зона разряжения ударной волны». В этой зоне скорость потока нулевая, а давление жидкости становится ниже первоначального, что приводит к сжатию стенок трубы (уменьшению диаметра). Фронт зоны разряжения передвигается к стояку со скоростью «с». При значительной первоначальной скорости потока разряжение в трубе может привести к снижению давления ниже атмосферного, а также к нарушению неразрывности потока (кавитации). В этом случае в трубопроводе около крана появляется кавитационный пузырь, схлопывание которого приводит к тому, что давление жидкости в зоне отраженной ударной волны становится больше, чем этот же показатель в прямой ударной волне.
  7. При достижении фронта сжатия ударной волны стояка скорость потока в квартирном трубопроводе нулевая, а давление жидкости – ниже первоначального и ниже, чем давление в стояке. Стенки трубопровода сжаты.
  8. Перепад давлений между жидкостью в стояке и квартирном трубопроводе вызывает поступление жидкости в квартирный трубопровод и выравниванию давлений до первоначального значения. В связи с этим стенки трубы также начинают приобретать первоначальные очертания. Так образовывается отраженная ударная волна, и циклы снова повторяются до полного угасания. При этом промежуток времени, в течение которого проходят все стадии и циклы гидравлического удара, не превышает, как правило, 0,001–0,06 с. Количество циклов может быть различным и зависит от характеристик системы.

На рис. 2 стадии гидравлического удара показаны в графическом виде.

Рис. 2. Графики изменения давления при гидравлическом ударе.

График на рис. 2а показывает развитие гидравлического удара, когда давление жидкости в зоне разряжения ударной волны не падает ниже атмосферного (линия 0).

График на рис. 2б отображает ударную волну, зона разряжения которой находится ниже атмосферного давления, но гидравлическая сплошность среды не нарушается. В этом случае давление жидкости в зоне разряжения ниже атмосферного, но эффект кавитации не наблюдается.

График на рис .2в отображает случай, когда нарушается гидравлическая неразрывность потока, то есть образуется кавитационная зона, последующее схлопывание которой приводит к возрастанию давления в отраженной ударной волне.

Разновидности гидравлических ударов и основные расчетные положения

В зависимости от скорости, с которой происходит закрытие запорного органа на трубопроводе, гидравлический удар может быть «прямым» и непрямым». «Прямым» называется удар, при котором перекрытие потока происходит за время меньшее, чем период удара, то есть выполняется условие:

Т3 ≤ 2L/c,

где Т3 – время закрытия запорного органа, с; L – длина трубопровода от запорного устройства до точки, в которой поддерживается постоянное давление (в квартире – до стояка), м; с – скорость ударной волны, м/с.

В противном случае гидравлический удар называется непрямым. При непрямом ударе скачок давления значительно меньше по величине, так как часть энергии потока демпфируется частичной утечкой через запорный орган.

В зависимости от степени перекрытия потока гидравлический удар может быть полным и неполным. Полным является удар, при котором запорный орган полностью перекрывает поток. Если же этого не происходит, то есть часть потока продолжает протекать через запорный орган, то гидравлический удар будет неполным. В этом случае расчетной скоростью для определения величины гидравлического удара станет разница скоростей потока до и после перекрытия. Величину повышения давления при прямом полном гидравлическом ударе можно определить по формуле Н.Е. Жуковского (в западной технической литературе формула приписывается Alievi и Michaud):

Δp = ρ · ν · c, Па,

где ρ – плотность транспортируемой жидкости, кг/м3; ν – скорость транспортируемой жидкости до момента внезапного торможения, м/с; с – скорость распространения ударной волны, м/с.

В свою очередь скорость распространения ударной волны с определяется по формуле:

, м/c,

где c0 — скорость распространения звука в жидкости (для воды – 1425 м/с, для других жидкостей можно принимать по табл. 1); D – диаметр трубопровода, м; δ – толщина стенки трубы, м; Еж – объемный модуль упругости жидкости (можно принимать по табл. 2), Па; Ест – модуль упругости материала стенок трубы, Па (можно принимать по табл. 3).

Таблица 1. Характеристики жидкостей

Наименование жидкости

Объемный модуль упругости, Па

Плотность, кг/м3

Скорость звука, м/с

Вода

2,03х109

Бензин

1,09х109

Керосин

1,46х109

Масло машинное

1,53х109

Спирт этиловый

1,32х109

Таблица 2. Характеристики материалов стенок труб

Наименование материала

Модуль упругости, Па

Отношение Еводы/Ест

Сталь

2,1х1011

0,01

Чугун

1,05х1011

0,02

Железобетон

0,169х1011

0,12

Асбестоцемент

0,17х1011

0,11

Полиэтилен

0,0156х1011

1,3

Металлополимер

0,01х1011

2,03

Полипропилен

0,009х1011

2,26

Алюминий

0,7х1011

0,03

Медь

0,9х1011

0,023

Если учесть, что скорость движения воды в квартирных системах не должна превышать 3 м/с (п.7.6. СНиП 2.04.01), то для трубопроводов из различных материалов можно вычислить величину повышения давления при возможном прямом полном гидравлическом ударе. Такие сводные данные по некоторым трубам представлены в табл. 3.

Таблица 3. Повышение давление при гидравлическом ударе при скорости потока 3 м/с

При непрямом гидравлическом ударе повышение давления рассчитывается по формуле:

, Па.

В табл. 4 приведено среднее время срабатывания основной квартирной арматуры. Для каждого типа этой арматуры рассчитана длина трубопровода, более которой гидравлический удар перестает быть прямым.

Таблица 4. Длина участка прямого удара для водозапорной арматуры

Тип квартирной арматуры

Время срабатывания, с

Длина участка прямого удара, м

Для неметаллического трубопровода

Для металлического трубопровода

Рычажный кран или смеситель

0,05

8,5

Душевой переключатель (дивертер)

0,03

5,2

Электромагнитный клапан стиральной машины

0,01

1,7

Электромагнитный клапан посудомоечной машины

0,01

1,7

Электромагнитный клапан системы защиты от протечек (1/2″)

0,05

8,5

Заливной клапан унитаза

0,06

10,5

Возможные последствия гидравлических ударов

В квартирных сетях возникновение гидравлических ударов, конечно, не влечет таких масштабных разрушительных последствий, как на магистральных трубопроводах большого диаметра. Однако и здесь они могут доставить массу хлопот и убытков, если не учитывать возможность их появления.

Периодически повторяющиеся гидравлические удары в квартирной трубной разводке могут стать причиной следующих неприятностей:

– сокращение срока службы трубопроводов. Нормативный срок службы внутренних трубопроводов определяется по совокупности характеристик (температура, давление, время), в которых эксплуатируется труба. Даже столь кратковременные, но часто повторяющиеся, знакопеременные скачки и провалы давления, происходящие при гидравлическом ударе, существенно искажают картину эксплуатационного режима трубопровода, сокращая срок его безаварийной эксплуатации. В большей степени это относится к полимерным и многослойным трубопроводам;

– выдавливание прокладок и уплотнителей в арматуре и соединителях трубопроводов. Этому подвержены такие элементы, как поршневые редукторы давления, шаровые краны, вентили и смесители с резиновыми сальниковыми кольцами, уплотнительные кольца обжимных и пресс-соединителей, а также кольца полусгонов («американок»). В квартирных водосчетчиках выдавливание уплотнительного кольца между измерительной камерой и счетным механизмом может привести к попаданию воды в счетный механизм (рис.3);

Рис. 3. Попадание воды в счетный механизм водосчетчика в результате выдавливания прокладки

– даже однократный гидравлический удар может полностью вывести из строя контрольно-измерительные приборы, установленные в квартире. Например, изгиб стрелки манометра от взаимодействия с ограничительным штифтом – явный признак имевшего место гидравлического удара (рис. 4);

Рис. 4. Характерное повреждение манометра гидравлическим ударом

– каждый гидроудар в квартирном трубопроводе из полимерных материалов, выполненном на обжимных, прессовых или надвижных соединителях, неизбежно приводит к микроскопическому «сползанию» соединителя с трубопровода. В конце концов, может наступить момент, когда очередной гидроудар станет критическим – труба полностью «выползет» из соединителя (рис. 5);

Рис. 5. Нарушение обжимного соединения МПТ в результате воздействия гидроудара

– кавитационные явления, которые могут сопровождать гидравлический удар, нередко являются причиной появления каверн в золотнике и корпусе запорной арматуры. Схлопывание вакуумных пузырьков при кавитации просто «выгрызает» куски металла с поверхности, на которой они образуются. В результате золотник перестает выполнять свою функцию, то есть, герметичность запорного органа нарушается. Да и корпус такой арматуры очень быстро выйдет из строя (рис. 6);

Рис. 6. Кавитационное разрушение внутренней поверхности сгона перед электромагнитным клапаном

– особую опасность для квартирных трубопроводов, выполненных из многослойных труб, представляет зона разряжения ударной волны при гидравлическом ударе. При клеевом слое низкого качества или наличии непроклеенных участков, образующийся в трубе вакуум отрывает внутренний слой трубы, заставляя его «схлопываться» (рис.7, 8).

Рис. 7. Многослойная полипропиленовая труба, пострадавшая от гидравлического удара

Рис. 8. «Схлопнувшаяся» металлополимерна я труба

При частичном схлопывании труба будет продолжать выполнять свою функцию, но с гораздо большим гидравлическим сопротивлением. Однако может произойти и полное схлопывание – в этом случае труба будет перекрыта своим же внутренним слоем. К сожалению, ГОСТ 53630-2009 «Трубы напорные многослойные» не требует проведения испытания образцов труб при внутреннем давлении ниже атмосферного. Однако ряд производителей, зная о подобной проблеме, включают в технические условия обязательный пункт о проверке трубы под разряжением. В частности, каждый рулон многослойных труб VALTEC подключается к вакуумному насосу, доводящему абсолютное давление в трубе до 0,2 атм (–0,8 бар избыточного). После чего с помощью компрессора через трубу прогоняется пенополистирольный шарик с диаметром, чуть меньшим проектного внутреннего диаметра трубы. Рулоны, через которые шарик не смог пройти, беспощадно бракуются и уничтожаются;

– еще одна опасность подстерегает при гидравлическом ударе внутренние трубопроводы горячего водоснабжения. Как известно, температура кипения воды находится в тесной зависимости от давления (табл. 5).

Таблица 5. Зависимость температуры кипения воды от давления

Температура кипения,°С

Абсолютное давление, атм

1,033

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

Если, допустим, в квартирный трубопровод поступает горячая вода с температурой 70 °С, а в зоне разрежения гидроудара давление снижается до абсолютного значения 0,3 атм, то в этой зоне вода превратится в пар. Учитывая, что объем пара при нормальных условиях почти в 1200 раз больше объема такой же массы воды, следует ожидать, что данное явление может привести к еще большему росту давления в зоне сжатия ударной волны.

Способы защиты от гидроударов в квартирных системах

Самым действенным и надежным способом защиты от гидравлического удара является увеличение времени перекрытия потока запорным органом. Именно этот способ используется на магистральных трубопроводах. Плавное закрытие задвижки не вызывает никаких разрушительных возмущений в потоке и позволяет избавиться от необходимости установки громоздких и дорогих демпфирующих устройств. В квартирных системах такой способ не всегда приемлем, т.к. в наш обиход прочно вошли и «однорукие» рычажные смесители, электромагнитные клапаны бытовой техники, и прочая арматура, способная перекрыть поток в короткий промежуток времени. В связи с этим квартирные инженерные системы уже на стадии проекта должны обязательно проектироваться с учетом опасности возникновения гидроудара. Конструктивные мероприятия, такие как использование эластичных вставок, компенсационных петель и расширителей, широкого распространения не получили. Наибольшей популярностью в настоящее время пользуется специально разработанная для этой цели арматура – пневматические (поршневые, рис. 9а, и мембранные, рис. 9б) или пружинные (рис.9в) гасители гидроударов.

Рис. 9. Типы гасителей гидроударов

В пневматических гасителе кинетическая энергия потока жидкости гасится энергией сжатия воздуха, давление которого изменяется по адиабате с показателем К = 1,4. Объем воздушной камеры пневматического гасителя определяется из выражения:

где P0 – начальное давление в воздушной камере, РК – конечное (предельное) давление в воздушной камере. В приведенной формуле левая часть представляет собой выражение для кинетической энергии потока жидкости, а правая – энергии сжатия воздуха.

Параметры пружин для пружинных компенсаторов находят из выражения:

где Dпр – средний диаметр пружины, I – число витков пружины, G – модуль сдвига, Fк – конечная сила, действующая на пружину, F0 – начальная сила, действующая на пружину.

В среде проектировщиков и монтажников бытует мнение, что обратные клапаны и редукторы давления тоже обладают способностью к гашению гидроударов.

Обратные клапаны, действительно, отсекая часть трубопровода в момент резкого перекрытия потока, уменьшают расчетную длину трубопровода, превращая прямой удар в непрямой, меньшей энергии. Однако, резко закрываясь под воздействием стадии сжатия ударной волны, клапан сам превращается в причину гидроудара в трубопроводе, расположенном до него. В стадии разряжения клапан снова открывается, причем, в зависимости от соотношения длин труб до клапана и после него, может настать такой момент, когда ударные волны двух участков сложатся, усилив скачок давления. Поршневые редукторы давления не могут служить гасителями гидравлических ударов в силу своей высокой инерционности – из-за работы сил трения в уплотнителях поршней, они просто не успевают отреагировать на мгновенное изменение давления. Кроме того, такие редукторы сами нуждаются в защите от гидроударов, вызывающих выдавливание уплотнительных колец из гнезд поршней.

Способностью частично поглощать энергию гидроударов обладают мембранные редукторы давления, однако они рассчитаны совсем на другие силовые воздействия, поэтому работа по гашению частых гидроударов быстро выведет их из строя. Кроме того, резкое перекрытие редуктора при ударной волне приводит, как в случае с обратным клапаном, к возникновению ударной волны на участке до редуктора, не защищенном мембраной.

Помимо всего прочего, квартирные гасители гидроударов кроме выполнения своей основной задачи выполняют еще несколько функций, немаловажных для безопасной эксплуатации квартирных трубопроводов. Эти функции будут рассмотрены на примере мембранного гасителя гидроударов VALTEC VT.CAR19 (рис. 10).

Гаситель гидроударов VT.CAR19

Рис. 10. Гаситель гидроударов VALTEC VT.CAR19

Квартирный гаситель гидроударов VALTEC VT.CAR19 конструктивно состоит (рис. 11) из шаровидного корпуса, выполненного из нержавеющей стали AISI 304L (1), с завальцованной мембраной из EPDM (2). Благодаря небольшим выпуклостям на поверхности мембраны обеспечиваются ее неплотное примыкание к корпусу и максимальная площадь контакта мембраны с транспортируемой средой. Воздушная камера гасителя находится под заводским давлением 3,5 бара, что обеспечивает защиту квартирных трубопроводов, давление в которых не превышает 3 бар. Гаситель может защищать и трубопроводы с рабочим давлением до 10 бар, но в этом случае необходимо с помощью насоса, присоединяемого к ниппелю (3) увеличить давление в воздушной камере до значения 10,5 бара. В случае, когда рабочее давление в квартирной сети ниже 3 бар, рекомендуется через ниппель (3) выпустить часть воздуха из камеры до значения Рраб + 0,5 бар.

Рис.11. Конструкция гасителя VALTEC VT.CAR19

Технические характеристики и габаритные размеры гасителя приведены в табл. 6.

Таблица 6. Технические характеристики VALTEC VT.CAR19

Наименование характеристики

Ед. изм.

Значение

Рабочий объем

л

0,162

Заводское значение предварительного давления в воздушной камере

бар

3,5

Максимальное давление при гидроударе

бар

Рекомендуемое рабочее давление в защищаемом квартирном трубопроводе при заводском значении давления в воздушной камере

бар

3,0

Максимальное рабочее давление в защищаемом квартирном трубопроводе

бар

Диапазон температур рабочей среды

°С

–10… +100

Размеры (см. эскиз):

Н – высота

мм

O – диаметр

мм

G – присоединительная резьба

дюйм

Материал:

Корпус

Нержавеющая сталь AISI 304L

Мембрана

Гаситель способен защищать трубопроводы от гидроударов, давление при которых возрастает до 20 бар, поэтому перед установкой гасителя необходимо проверить, какой величины гидравлический удар может произойти в конкретном квартирном трубопроводе. Расчет возможного давления при гидроударе Ргу можно рассчитать по формуле:

, бар.

Отношение Eводы/Ест для трубопроводов из разных материалов принимается по табл. 2.

Надежно защищая квартирные трубопроводы от гидроударов, гаситель VT.CAR19 в силу своих конструктивных особенностей способен воспринимать излишек воды, образующийся при нагревании поступившей холодной воды в период перерыва в водопользовании. Например, если в квартиру, оборудованную на вводе редуктором или обратным клапаном поступила вода с температурой +5°С, и за ночь она нагрелась до 25°С (обычная температура воздуха в санузле), то давление в отсеченном участке трубопровода возрастет на:

ΔP = βt·Δt/βv = 0,00015 · (25 – 5) / 4,9 · 10–9 = 61,2 бара.

В приведенной формуле βt – коэффициент температурного расширения воды, а βv – коэффициент объемного сжатия воды (величина, обратная модулю упругости). Формула не учитывает температурное расширение материала самой трубы, но практика показывает, что каждый градус повышения температуры воды в трубопроводе повышает давление от 2 до 2,5 бара.

Здесь-то и востребуется вторая функция мембранного гасителя гидроударов. Приняв в себя часть воды из нагревающегося трубопровода, он избавит его от чрезмерной нагрузки и поможет избежать аварийной ситуации. В табл. 7 приведены предельные длины трубопроводов, защищаемые гасителем VT.CAR19 от температурного расширения жидкости.

Таблица 7. Предельная длина трубопроводов, защищаемых от температурного расширения (при ΔТ = 20°C)

Материал трубопровода

Размеры трубы

Предельная защищаемая длина, м

Металлополимер

16х2

20х2

26х3

32х3

40х3,5

Сшитый полиэтилен

16х2

20х2

Полипропилен

20х3,4

25х4,2

32х5,4

40х6,7

Медь

15х1

18х1

22х1

Стальные водогазопроводные

1/2″

3/4″

1″

Что касается квартирных трубопроводов горячего водоснабжения, то и здесь гаситель VT.CAR19 выполняет важную задачу по предотвращению вскипания воды в зоне разряжения ударной волны. Поглощая энергию гидравлического удара, гаситель ликвидирует и эту опасность.

Наибольшая эффективность гасителя гидроударов достигается при его установке непосредственно перед защищаемой арматурой. В этом случае возможность появления гидроудара полностью исключается (рис. 12).

Рис. 12. Установка гасителей непосредственно перед защищаемыми приборами

В квартирных системах, где трубопроводы не имеют значительной протяженности, допускается устанавливать один гаситель на группу приборов. В этом случае следует проверить, чтобы общая длина защищаемых одним гасителем участков трубопроводов не превышала значений, изложенных в табл. 8.

Таблица 8. Длина защищаемых одним гасителем участков трубопроводов

При превышении указанных в таблице значений необходимо устанавливать не один, а несколько гасителей. В случае, когда расчетное давление при гидравлическом ударе превышает максимально допустимое давление для данного гасителя (20 бар для VT.CAR19), следует выбрать другой тип прибора с более высокими прочностными характеристиками.

В соответствии с п.7.1.4. СП 30.13330.2012 «Внутренний водопровод и канализация зданий», положения которого вступили в силу с 1 января 2013 года, конструкция водоразборной и запорной арматуры должна обеспечивать плавное открывание и закрывание потока воды. Но это требование навряд ли будет выполняться, т.к. торговля предлагает жильцам огромный ассортимент арматуры и приборов, в которых плавное регулирование невозможно. Учитывая это, ведущие проектные и строительные организации нашей страны уже сейчас предусматривают в проектах установку квартирных гасителей гидравлических ударов. Например, ДСК-1 города Москвы перестраивает производство на выполнение узлов ввода квартирного водопровода по схеме, отображенной на рис. 13.

Рис. 13. Узел квартирного ввода водопровода ДСК-1

В.И. Поляков

(19) ИЕ ИЗО РЕТЕНИЯ ГОСУДАРСТВЕННЫЙ КОМИТЕТПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМПРИ ГКНТ СССР АВТОРСКОМУ СВИДЕТЕЛЬСТВ(56) Авторское свидетельство СССРМ 1312297, кл. Р 16 1 55/04, 1985.(54) ГАСИТЕЛЬ ГИДРАВЛИЧЕСКИХ УДАРОВ(57) Изобретение относится к области машиностроения и может быть использовано длязащиты трубопроводов от гидравлическихударов, Целью изобретения является повышение надежности устройства, При гидравлическом ударе давление под сбросным 1686247 А 1(51)5 Е 16 1. 55/04, Г 16 клапаном 2 растет быстрее, чем над ним, клапан открывается, и жидкость отводится в окружающую среду. Избыточное давление затрачивается на сжатие газа над дополнительным поршнем 9 со штоком 10, сжатие пружины 8, настройка которой осуществляется регулировочным винтом 7, установленным на корпусе 5, и перетекание жидкости в трубке 6 с регулируемым проходным сечением, Колебания давления в магистрали 1 на рабочем режиме компенсируются за счет перемещения подвижной перегородки 11 и перетекания жидкости в канале штока 3, что также позволяет снижать гидравлические удары, начинающиеся как с повышения, так и с понижения давления, Дополнительный поршень 4 тормозного устройства обеспечивает перетекание жидкости по трубке 6, 1 ил.Заказ 3539 Тираж Подписное ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 13035, Москва, Ж, Ра шская наб., 4/5 Прсизводственно-издательский комбинат «Патент», г, Ужгород, ул.Гагарна, 101 Изобретение относигся к области машиностроения и может быть использованопри защите трубопроводов от гидравлических ударов,Цель изобретения — повышение надежности устройства,На чертеже представлен гаситель гидравлических ударов,Гаситель содержит установленный научастке трубопровода 1 подпрукиненныйсбросной клапан 2 со штоком 3, поршень 4,корпус 5, трубку б, регулировочный винт 7,пружину 8, дополнительный поршень 9 соштоком 10, подвижную герегородку 11.Гаситель работает следующим образом.При заполнении магистрали 1 водойвоздух, который вытесняетсл из трубопровода, поступает под сбросной клапан 2 искапливается в полости над подвижной перегородкой 11. В связи с этим указаннаяконструкция гасителя позволяет гасить гидравлические удары, начинающиеся с волныпонижения давления, При установлении рабочего давления вода проходит через полыйшток 3 в надпоршневуо полость над подвижной перегородкой 11, После выравнивания давл ения подвижная перегородка 11гасителя переместитсл в крайнее нижнееположение, запорный орган 2 плотно перекроет сброс воды из трубопровода 1 за счетразности площадей, на которые действуетдавление.При и дравлическом ударе давлениепод запорным органом 2 растет значительно быстрее, чем в надпоршневой его полости, так как для выравнивания давлениявода должна проте ь; через полый шток 3,Запорный орган 3 при этом поднимается,приподнимая демпфирующее устройство ипроисходиг сЬрос Воды через ОтВОдящийпатрубок. Гри перемещении демпфирующего устройства вверх под действием гидравлического удара происходит сжатиеВоздуха В пОлОсти над дополнительным пОО»жнем 9 и пружины 8, Отрегулированной регулировочным Винтом 7 на срабатываниепри Определенном давлении, В этот громежуток времени вязкая жидкость в полостикорпуса 5 перетекает через импульснуютрубку 6 из надпоршневой полости в подпоршневуо, Заданнцй расход жидкости устанавливается регулировочным вентилем.Составитель (Редактор Е,Папп Техред М,Мор что обеспечивает необходимую степень га.шения гидравлического удара. Таким образом, демпфирование гидравлического удараосуществгглется при помощи воздуха в што 5 ковой полости дополнительного поршня 9собственной массы демпфирующего устройства, жесткости пружины и степени перетока жидкости через регулировочнцйвентиль,10 При гидравлическом ударе, начинающемся с волны пониженного давления, гашение гидравлического удара происходитза счет возможности перетока жидкости исжатого воздуха из полости над подвижной15 перегородкой 11 в трубопровод. При этомпредлагаемая конструкция гасителя можеткомпенсировать пульсации давления и гасить их за счет движения подвижной перегородки 11 по штоку 3 и рассеяния20 пульсаций в канале штока,Таким образом, предлагаемую конструкцию гасителя гидравлических ударовможно использовать для гашения гидравлических ударов как с волны повышения, так и25 с волны понижения давления,Формуга изобретенияГаситель гидравлических ударов, содеожащий установленный на участке трубопровода подпружиненный сбросной клапан со30 штоком и тормозным устройством, вьПолненным В виде поршня, размещенного вкорпусе, надпоршневая и подпоршневаяполости которого заполнены жидкостью исообщены трубкой и регулируемым проход 35 ным сечением, о т л и ч а ю щ и й с я тем,что, с целью повышения надежности работы, надпоршневая полость тормозного устройства заполнена жидкостью частично иснабжена регулировочным Винтом, установ 40 ленным на корпусе, пружина сбросного клапана выполнена конической и установленавершиной конуса к регулировочному винту,а основанием к поршню, корпус снабжендополнительным поршнем со штоком и по 45 движной перегородкой, при этом дополнительный поршень установлен с Образованиемгазовой штоковой полости, а шток соединенс поршнем тормозного устройства, подвижная перегородка устаноВлена коэксиально50 штоку сбросного клапана с Образованиемполости, причем последняя сообщена каналом в штоке с участком трубопровода.

Смотреть

About the author

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *