Ламповый усилитель, что это?

Добрый день!
Изобретенная в 1947 году технология часто используемых сегодня биполярных транзисторов решила исход послевоенной борьбы инновационных транзисторных и традиционных ламповых усилителей не в пользу последних. Конструкция постоянно совершенствовалась, и со временем влияние на звуковой сигнал стало практически незаметным — усилители на лампах постепенно канули в Лету. Второй шанс ламповые усилители в силу активного продвижения цифрового звука получили в конце 80-х годов. Как оказалось, усилитель на лампах, выдает, подчеркиваю, субъективно более качественный звук. Секрет в том, что у лампового усилителя в отличие от транзисторного гораздо более плавно нарастают нелинейные искажения. В результате меломану кажется, что усилители на лампах дают более насыщенный, мелодичный звук. Конструктивно все современные усилители можно разделить на две категории: однотактные и двухтактные. Двухтактные усилители оснащаются дополнительными трансформаторами, позволяющими заметно повысить итоговую мощность сигнала. «Двухтактники» более динамичны, с хард-роком справляются на ура такие лампы как 6l6, KT88, KT66, 6550, el34 и некоторые другие. Так же необходим хороший блок питания, и желательна выходная мощность порядка 50-100Вт. Все старые роковые группы: Pink Floyd, Deep Purple и тд., играли на ламповой технике.

История

Радиолампы, как и другие электронные компоненты, имеют богатую историю, в ходе которой произошла заметная эволюция. Началось все в нулевых годах прошлого века, а закатом ламповой эры можно считать шестидесятые годы, когда свет увидела последняя фундаментальная разработка — миниатюрные радиолампы нувисторы, а транзисторы уже начали активно завоевывать рынок. Но из всей истории нас интересуют лишь ключевые этапы, когда были созданы основные типы радиоламп и разработаны основные схемы их включения.

Первый в мире триод изобретателя Ли де Фореста, 1908 год

Первой разновидностью радиоламп, разработанной для создания усилителей, были триоды. Цифра 3 слышится в названии не случайно — именно столько активных выводов имеет триод. Принцип работы триода предельно прост. Между анодом и катодом лампы последовательно включаются источник питания и первичная обмотка выходного трансформатора (ко вторичной обмотке которого подключается акустика). Полезный сигнал подается на сетку лампы. При подаче напряжения в схему усилителя между катодом и анодом протекает поток электронов, а расположенная между ними сетка модулирует этот поток соответственно изменениям уровня входящего сигнала.

В ходе использования триодов в различных отраслях промышленности потребовалось улучшить их характеристики. Одной из таких характеристик была проходная емкость, величина которой ограничивала максимальную рабочую частоту лампы. В процессе решения этой проблемы появились тетроды — радиолампы, имеющие внутри не три, а четыре электрода. Четвертым стала экранирующая сетка, установленная между управляющей сеткой и анодом. Задачу повышения рабочей частоты это решало в полной мере, что вполне удовлетворило создателей технологии, разрабатывавших тетроды для того, чтобы радиостанции и радиоприемники работали в коротковолновом диапазоне, имеющим более высокие несущие частоты нежели средне- и длинноволновый.

Строение триода

С точки зрения качества воспроизведения звука тетрод не превзошел триод принципиально, поэтому другая группа ученых, озадаченная вопросами воспроизведения звуковых частот, усовершенствовала тетрод, используя, по сути, тот же подход — просто добавив в конструкцию лампы еще одну дополнительную сетку, располагающуюся между экранирующей сеткой и анодом. Это было необходимо для того, чтобы подавить динатронный эффект — обратную эмиссию электронов от анода к экранирующей сетке. Подключение дополнительной сетки к катоду препятствовало этому процессу, делая выходную характеристику лампы более линейной и повышая выходную мощность. Так появился новый тип ламп: пентод.

Плюсы

Традиционный триодный режим работы лампы имеет как минимум одно значимое преимущество: способность работать без обратной связи. Пентодный режим имеет свои плюсы: большую линейность работы и возможность достигать более высокой мощности. Ультралинейный режим дает возможность отказаться от общей обратной связи и при этом сохранить мощность, близкую к пентодному включению. При этом триод при прочих равных обходит оба варианта по уровню собственного шума лампы.

Особенности

С точки зрения качества и характера звучания каждый тип ламп и каждый режим включения имеет свои особенности, настолько очевидные на слух, что даже ультралинейный режим, по факту, не стал золотой серединой. Триоды в чистом виде и триодное включение пентодов обеспечивают наиболее чистый и объемный звук до тех пор, пока дело не дойдет до энергичной музыки с быстрыми и значительными по амплитуде перепадами громкости. Иными словами — для спокойного джаза триоды подходят куда лучше, чем для прослушивания рока.

Пентодный и ультралинейный режимы, напротив, больше подходят для энергичной музыки, но в ряде случаев звучат недостаточно чисто, точно и детально. Особенно часто эти претензии относятся к пентодному режиму, а в целом характер звучания и пентодного, и ультралинейного режимов нередко сравнивают с транзисторными усилителями.

Звук

Когда речь идет о High End-компонентах, особенно ламповых, не всегда удается четко провести грань между «усилитель не справился» и «так и было задумано». В конце концов, аудиоинженер в мире High End — это тоже в некотором роде художник и он имеет право на свое собственное представление о том, как должна звучать система. Избежать такого рода недоразумений помогло использование в процессе тестирования двух пар акустических систем, обладающих принципиально разными характеристиками. Специфические признаки недостатка мощности и роста искажений можно было заметить на тяжелой нагрузке и на громкости выше средней, что в общем соответствует заявленным характеристикам. С крупными полочниками или напольниками средних размеров со столь же среднестатистическими параметрами мощности, импеданса и чувствительности Cayin CS-100A вполне справится.

В триодном режиме усилитель выдает красивое, тембрально насыщенное звучание с богатым верхним и средним басом. Лучше всего звучала спокойная медленная музыка, вокал, аудиофильский джаз, камерная классика малых составов. Вполне можно было получить удовольствие от ранних Beatles и Led Zeppelin. При этом попытки послушать современный рок и металл не увенчались успехом. Звучание гитар было очень густое, тягучее, округлое и не особенно агрессивное. Самый злющий металл подавался так, словно его записывали в начале семидесятых.

Переключение в ультралинейный режим производится одним нажатием кнопки и меняет картину полностью: рок, металл, танцевальная электроника сбрасывают налет винтажности и начинают звучать не менее энергично, чем на транзисторных усилителях, работающих в классе АВ. В характере остается некоторая теплота и приятная округлость басовых нот, но в весьма умеренных количествах. На медленной музыке и малых составах ультралинейный режим не столь красив и выразителен, как триодный, музыка подается более спокойно и ровно.

Эленктронная лампа — это название прекрасно подчеркивает основную черту радиолампы как электронного прибора, работа которого построена на использовании движения электронов. В чем же заключается участие электронов в работе радиолампы?

В металлах имеется много полусвободных, г. е. слабо связанных с атомами электронов. Эти электроны находятся в постоянном движении, точно так же как находятся в постоянном движении и все частицы вещества — атомы и молекулы.

Движения электронов хаотичны; для иллюстрации такого хаотического движения обычно приводят в качестве примера рой комаров в воздухе. Скорость движения электронов немала: она в грубых цифрах равна примерно 100 км/сек — это раз в 100 больше скорости винтовочной пули.

Но если электроны летают в металле в различных направлениях, как мошкара в воздухе, да еще с такими громадными скоростями, то они, вероятно, вылетают и за пределы тела.

На самом деле этого не происходит. Те скорости, которыми обладают в нормальных условиях электроны, недостаточны для их вылета из толщи металла во внешнее пространство. Для этого нужны гораздо большие скорости.

Электронная эмиссия

Каким же способом можно увеличить скорость движения электронов? Физика дает ответ на этот вопрос. Если нагревать металл, то скорость движения электронов возрастет и в конце концов может достичь того предела, когда электроны начнут вылетать в іпространство.

Нужная для этого скорость довольно велика. Например, для чистого вольфрама, из которого делают нити накала радиоламп, она равна 1270 км/сек. Такой скорости электроны достигают при нагреве вольфрама до 2 000° и выше (здесь и дальше градусы указаны по абсолютной шкале).

Испускание нагретым металлом электронов называется термоэлектронной эмиссией. Электронную эмиссию можно уподобить испарению жидкостей.

При низких температурах испарения совсем не происходит или оно бывает очень мало. С повышением температуры испарение увеличивается. Бурное испарение начинается по достижении точки кипения.

Испарение жидкости и термоэлектронная эмиссия металлов — явления, во многом сходные.

Для (получения термоэлектронной эмиссии металл надо нагреть, причем способ нагревания не имеет значения. Но практически удобнее всего нагревать металл электрическим током.

В электронных лампах нагреваемому металлу придают вид тонких нитей, накаливаемых электрическим током. Нити эти называются нитями накала, а нагревающий их ток — током накала.

Мы упоминали о том, что для получения эмиссии надо нагреть металл до очень высокой температуры — примерно до 2 000 и даже выше. Такую температуру выдерживает далеко не каждый металл; большинство металлов при такой высокой температуре плавится.

Поэтому нити накала можно делать только из очень тугоплавких металлов; обычно их делают из вольфрама.

Рис. 1. Температура нити накала лампы.

При t = 2 000° вольфрам начинает испускать электроны.

В первых образцах электронных ламп применялись чисто вольфрамовые нити накала. При температуре, нужной для получения эмиссии, вольфрамовые нити накаливались до белого свечения, отчего и произошло, между прочим, название «лампа».

Однако такая «иллюминация» обходится очень дорого. Чтобы накалить нить лампы до белого каления, нужен сильный ток. Маленькие приемные лампы с чисто вольфрамовой нитью накала потребляли ток накала в пол-ампера.

Но скоро был найден путь уменьшения тока накала. Исследования показали, что если покрыть вольфрам некоторыми другими металлами или их соединениями, то вылет электронов облегчается.

Для вылета требуются меньшие скорости, следовательно требуется и меньший нагрев нити, значит такая нить будет потреблять меньший ток накала.

About the author

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *