Несущая способность сваи по грунту

Расчет несущей способности сваи по грунту

Сваи широко применяют в строительстве. Они позволяют устраивать фундамент на неустойчивых почвах, ограждать котлованы, возводить подпорные стенки и укреплять грунт.

Это экономичный, устойчивый вариант установки фундамента, применяемый практически в любых условиях.

В статье мы расскажем о видах свай, порядке и различных методах расчета фундамента.

Виды

Расчет свай начинается с выбора их типа.

По способу заглубления в грунт различают:

  • Забивные сваи. Самый популярный вид. Погружаются в грунт путем забивки пневматическим молотом на рассчитанную глубину;
  • Буронабивные сваи устанавливаются в самые короткие сроки. Сначала методом шнекового бурения разрабатывают скважину и уплотняют грунт вокруг нее. Потом одновременно с извлечением бура под давлением закачивают в скважину бетонную смесь. Сразу после этого в ней устанавливают армирующий каркас. Его изготавливают из металлических стержней на заводе или строительной площадке;
  • Вибропогружаемые опускаются в толщу пород под действием собственного веса. Специальная установка передает вибрацию через сваю на грунт, за счет этого уменьшается сила трения между конструкцией и частицами почвы и свая постепенно погружаются в породу. Метод применяется на площадках с песчаным или насыщенным влагой грунтом;
  • Винтовые конструкции имеют лопасти на концах, благодаря им конструкция погружается в землю. Хорошо работают на неустойчивых грунтах и плывунах при наличии недалеко от поверхности прочной породы. При монтаже не издают шума, не повреждают почву, могут устанавливаться на площадках с плотной застройкой. Монтаж осуществляется вручную или с применением легкой техники;
  • Вдавливаемые устанавливаются без сильных толчков и вибраций, создают минимальную нагрузку на почву и фундаменты расположенных вблизи сооружений. Подходят для строительства крупных объектов в местах с плотной застройкой и вблизи зданий с неустойчивыми или старыми фундаментами.

По виду материала:

  • Железобетон. Самый популярный материал для возведения крупных объектов. Металл, составляющий каркас обеспечивает стойкость к изгибающим нагрузкам, а бетон защищает металлоконструкцию от воздействия окружающей среды, обеспечивает стойкость к вертикальным нагрузкам и увеличивает силу трения с грунтом;
  • Дерево. Применяется в индивидуальном строительстве на сухих почвах. Дешевый и доступный материал, но требует дополнительной гидроизоляции;
  • Металл. Из этого материала выполняют винтовые сваи. После изготовления их покрывают специальным составом, защищающим их от коррозии.

Сваи отличаются по виду конструкции и форме. Это могут быть квадратные, прямоугольные, многоугольные и круглые сечения. Последний вид приобрел наибольшую популярность благодаря простоте изготовления и расчета нагрузки на такую конструкцию.

По характеру работы:

  • Сваи-стойки работают за счет установки их нижней части на прочную породу. Они передают нагрузку на устойчивое основание, миную другие, менее надежные слои;
  • Висячие сваи работают за счет силы трения между ними и сжатыми грунтами вокруг.

На выбор типа конструкции влияют условия работы, особенности грунтов, конструкция и вес здания. Для правильного расчета необходимо обратиться к специалистам, способным провести все необходимые измерения и изыскания.

Проектирование свайного фундамента

При проектировании свайного фундамента необходимо участь ряд факторов, влияющих на его устойчивость:

  • Глубина залегания толщина и надежность пород;
  • Масса здания;
  • Условия строительства и эксплуатации;
  • Конструктивные особенности здания.

При проектировании инженеры опираются на данные геологических изысканий и на их основе определяют возможность строительства, рассчитывают количество свай, выбирают их вид, форму и материал.

Второй важный фактор — это нагрузка от здания.

Она складывается из нескольких видов нагрузки:

  • Постоянная. Включает в себя вес самого здания;
  • Долгосрочная временная — это вес станков, оборудования и других тяжелых конструкций;
  • Краткосрочная временная складывается из веса мебели и людей в здании;
  • Снеговая и ветровая нагрузки рассчитываются отдельно для каждого здания на основании климатических данных региона согласно СП 131.13330.2012 «Строительная климатология».

Карта снеговых районов России

Вид сваи зависит от технико-экономических показателей строительства. Подбирается самый дешевый вариант, удовлетворяющий все требования и обеспечивающий надежность конструкции.

На этапе проектирования инженеры предусматривают запас прочности, обеспечивающий длительный срок эксплуатации фундамента даже при больших нагрузках.

Расчет ростверка

Важный показатель для строительства — количество свай в ростверке. Этот показатель напрямую влияет на способность конструкции правильно передавать нагрузку на основание и обеспечивать прочность фундамента.

Ростверк — это балка, соединяющая верхние части свай и равномерно распределяющая между ними нагрузку.

Крепление ростверка к разным видам свай

Количество свай в ростверке находят по формуле:

где:

  • dp — заглубление ростверка;
  • N0I — максимальное значение суммы нагрузок от веса здания;
  • Yk — коэффициент надежности;
  • F — максимальная нагрузка на одну сваю;
  • A — площадь ростверка;
  • Ymt — усредненный вес ростверков и грунта на его обрезах.

Полученное в результате вычислений число округляется всегда в большую сторону до целого значения.

Сваи распределяют согласно правилам:

  • В шахматном порядке, в два ряда или в одну линию с равными промежутками;
  • Расстояние между соседними сваями не менее трех их диаметров;
  • Минимальное расстояние от края ростверка до ближайшей сваи равно одному ее диаметру;
  • При возникновении только вертикальных нагрузок сваи заглубляют в ростверк всего на 5–10 см, в иных случаях соединение делают более надежным и дополнительно рассчитывают.

При расчетах ростверков инженеры работают, основываясь на СП 63.13330.2012 «Бетонные и железобетонные конструкции».

Алгоритм расчета свайного фундамента

Процесс расчета начинается с определения общего веса здания.

Он состоит из суммы массы всех конструкций:

  • Кровля;
  • Стены;
  • Перекрытия;
  • Железобетонный каркас.

При расчете толщина каждого слоя конструкции умножается на ее высоту и на плотность. В результате рассчитывается нагрузка на 1 м2 конструкции.

Кратковременные равномерно распределенные нагрузки (вес людей и мебели) берутся с расчетом 150 кг/м2. Сумма нагрузок вычисляется путем умножения значения на общую площадь здания. После этого определяется нагрузка от веса снега. Она будет зависеть от климатического района и форму крыши.

Чем больше угол наклона крыши, тем меньше будет снеговая нагрузка.

После этого определяется несущая способность каждой сваи и их количество в ростверках. Полученные значения дополнительно проверяют и только после этого приступают к дальнейшему проектированию и строительству здания.

Расчет несущей способности по грунту

Несущая способность — это значение, необходимое для выполнения правильных расчетов. Выполнить расчет можно с помощью нескольких методов.

Предварительный теоретический расчет по формуле Fd = Yc * (Ycr * R * A + U * ∑ Ycri * fi * li), где:

  • А — площадь опирания на грунт нижней части единицы конструкции;
  • Yc, Ycr, Ycri — коэффициенты, учитывающие условия работы фундамента, основания, сил трения;
  • U — периметр разреза сваи;
  • fi — сила трения на боковых стенках;
  • R — величина несущей способности грунта в месте опирания;
  • li — длина боковых частей.

Метод статических нагрузок — это комплекс полевых работ, связанных с практическим нахождением несущей способности.

Это наиболее точный метод:

  • На площадке устанавливают пробную сваю;
  • Дают конструкции набраться прочности в течение положенного срока;
  • Установленный на сваю ступенчатый домкрат передает на нее нагрузку;
  • Специальный прибор замеряет усадку сваи;
  • На основе полученных данных проводятся расчеты.

Метод динамической нагрузки -на уже установленный свайный фундамент передают ударную нагрузку и после каждого удара определяют усадку и проводят необходимые расчеты.

Метод зондирования — пробную сваю оснащают датчиками, погружают на расчетную глубину и определяют сопротивление грунтов.

После выполнения теоретического расчета необходимо дополнительно выполнить одно или несколько полевых испытаний и дополнительных расчетов на их основании. Это поможет проверить правильность расчетов и изысканий на практике.

Для упрощения расчетов инженерами был создан калькулятор несущей способности грунта с использованием макросов в Excel.

Он способен:

  • Построить график изменения несущей способности;
  • Разбить толщу пород на слои, основываясь на введенных данных;
  • Найти коэффициент работы всей поверхности сваи;
  • Учесть коэффициенты, уменьшающие несущую способность.

Расчет сваи-стойки, опирающейся на несжимаемое основание

Данные для расчета берут в СП 24.13330.2011 «Свайные фундаменты».

В таблице указаны значения расчетных сопротивлений свай:

Табличные значения сопротивлений для разных типов грунта

Формула для расчета сваи-стойки:

Fd=gcRA, где:

  • gc — коэффициент, учитывающий работу грунта;
  • R — взятое из таблицы сопротивление грунта;
  • А — площадь разреза сваи.

Результат расчета используется для дальнейшего нахождения количества свай в ростверке.

Расчет несущей способности сваи по грунту — это непростой процесс, требующий опыта и внимания со стороны инженеров. Расчет выполняется в несколько этапов, теоретически полученные значения проверяют в ходе полевых испытаний, полностью исключая возможность ошибки.

Расчет свайного фундамента могут выполнять только профессионалы с инженерным образованием и разрешением на подобную деятельность.

Несущая способность свай

Несущая способность свай — это максимальная величина нагрузки, которую способна выдерживать погруженная в грунт свая, не подвергаясь деформациям.

Существует два типа несущей способности свай — по материалу изготовления и по грунту. Данные о несущей способности конструкции исходя из ее материала могут быть получены при проведении теоретических расчетов, тогда как определение несущей способности сваи по грунту требует проведения практических исследований на месте строительства.

Методы определения несущей способности сваи

При проектировании свайных фундаментов используются четыре метода определения несущей способности свайных конструкций:

  • Способ теоретического расчета;

Совет эксперта! данный метод является предварительным, полученные результаты в последствии корректируются на основании фактических данных о характеристиках грунта.

Расчет несущей способности выполняется по формуле: Fd = Yc * (Ycr * R * A + U * ∑ Ycri * fi * li)

  • Yc — совокупный коэфф. условий работы;
  • Ycr — коэфф. сопротивления почвы под опорной подошвой сваи;
  • R — сопротивление почвы под опорной подошвой сваи;
  • А — диаметр опорной подошвы;
  • U — периметр сечения свайного столба;
  • Ycri — коэфф. условий работы грунта по боковым стенкам сваи;
  • fi — сопротивление почвы по боковым стенкам;
  • li — длина боковых поверхностей.
  • Метод пробных статистических нагрузок;

Практический способ реализуемый в полевых условиях. После отдыха сваи (спустя 2-3 дня после забивки столба), на конструкцию с помощью ступенчатого домкрата передается статическая нагрузка.
Посредством специального прибора — прогибометра, определяется величина усадки сваи и производятся необходимые расчеты. Данный метод считается одним из наиболее точных.

Рис 1.1: Определение несущей способности сваи методом пробных статистических нагрузок

  • Метод динамических нагрузок;

Исследования проводятся на уже погруженных сваях по истечению периода отдыха столбов. На конструкцию посредством дизель молота передается ударная нагрузка (до 10 ударов). После каждого удара прогибометром определяется степень усадки сваи. Данный способ реализуется в комплексе со статическим методом.

Рис 1.2: Прогибометр — прибор для измерения усадки сваи

  • Метод зондирования.

Для реализации метода зондирования свая снабжается специальным датчиками, после чего выполняется ее погружение на проектную глубину посредством ударной нагрузки (динамическое зондирование) либо вибропогружателями (статическое зондирование).

Датчики определяют сопротивление грунта боковой и нижней стенки свайного столба, по которой рассчитывают несущую способность конструкции в конкретном типе почвы.

Рис. 1.3: Схема метода зондирования свай

Методы определения несущей способности грунта

Несущая способность почвы — один из важнейших параметров, учитываемых во время проектирования свайных оснований.

Данная величина демонстрирует, какую нагрузку из вне способна переносить условная площадь грунта (она, как правило, существенно ниже несущей способности самой сваи). Несущая способность почвы рассчитывается в двух показателях — тонн/м2 либо кг/см2.

На несущую способность грунта оказывают непосредственное влияние следующие факторы:

  • Тип почвы;
  • Насыщенность влагой;
  • Плотность.

Совет эксперта! Почва, чрезмерно насыщенная влагой, относится к категории проблемных грунтов, поскольку чем большее количество влаги она содержит, тем меньшими будут ее несущие характеристики.

Чтобы определить несущие свойства грунта необходимо проводить геодезические изыскания — для этого выполняется бурение пробной скважины, из которой берутся пробы разных слоев почвы. Все исследования и расчеты проводятся в строительно-испытательных лабораториях с применением специального оборудования.

Представляем вашему вниманию таблицу несущей способности основных типов грунтов:

Таблица 1.1: Несущая способность разных видов грунтов

При отсутствии возможности провести геодезические исследования вы можете самостоятельно определить ориентировочную несущую способность грунта, для этого с помощью ручного бура создайте скважину (до двух метров), опознайте тип почвы и сопоставьте ее с табличными данными.

Несущая способность свай СНИП

Важно! Исследования и расчеты направленные на определение несущих характеристик свай необходимо выполнять согласно требований СНиП № 2.02.03-85 «Свайные фундаменты».

Несущая способность буронабивной сваи

Буронабивные сваи — конструкции, обладающие наибольшими несущими характеристиками среди всех видов свай.

Это сваи, сформированные в результате заполнения бетоном предварительно пробуренной скважины, они укреплены арматурным каркасом и, как правило, обладают уширенной опорной пятой, которая способствует равномерному распределению оказываемой на почву нагрузки.

Рис. 1.4: Этапы создания буронабивных свай

Расчет несущих свойств буронабивных свай выполняется по формуле: Fdu = R×A+u×∫ ycf ×Fi×Hi, в которой:

  • R — нормативное сопротивление почвы под опорной пятой сваи;
  • А — площадь опорной пяты;
  • u — периметр сечения свайного столба;
  • Ycf — коэфф. условий работы грунта на боковой стенке столба (=1);
  • Fi — среднее сопротивление боковой поверхности опорной пяты;
  • Hi — толщина слоев почвы контактирующих с боковой стенкой свайного столба.
  • R, Fi и Hi — это нормативные данные, которые вы можете взять из нижеприведенных таблиц.

Таблица 1.2: Расчетные сопротивления на боковых стенка свай (Fi)

Таблица 1.3: Расчетная толщина слоев почвы контактирующей с боковыми стенками сваи (Hi)

Таблица 1.4: Сопротивление разных типов грунтов под опорной подошвой сваи (R)

Увидеть усредненные показатели несущих характеристик буронабивных свай вы можете в нижеприведенной таблице.

Таблица 1.5: Несущая способность буронабивных свай

Несущая способность забивной ЖБ сваи

Фактические несущие характеристики забивных ЖБ конструкций (Fd) рассчитывается как совокупность сопротивления почвы под нижней частью свайного столба (Fdf) и сопротивления по отношению к ее боковым стенкам (Fdr).

Формула расчета следующая: Fd=Ycr ×(Fdf+Fdr), где:

Fdf = u * ∑Ycf * Fi * Hi

  • u — внешний периметр сечения ЖБ столба;
  • Ycr — коэф. условий работы столба в почве (=1);
  • Fi — сопротивление слоев почвы на боковой стенке сваи;
  • Hi — общая толщина слоев почвы контактирующих с боковой стенкой свайного столба
  • Fdr = Ycr * R * A
  • R — нормативное сопротивление почвы под нижним концом сваи;
  • А — площадь опорной подошвы.

Несущие характеристики забивных железобетонных свай вы можете посмотреть в таблице

Таблица 1.6: Несущие характеристики забивных ЖБ свай

Несущая способность винтовой сваи

Винтовые сваи — наиболее распространенный тип в свай в частном строительстве. Монтаж винтовых свай выполняется в кратчайшие сроки, а их несущих характеристик с запасом хватает для обустройства надежного фундамента под строительство 1-2 этажного дома из легких материалов.

Рис 1.5: Виды винтовых свай

Формула расчета несущей способности винтовой сваи: Fd=Yc*((a1с1+a2y1h1)A+u*fi(h-d))

Yc — коэф. условий работы столба в почве;
a1 и a2- нормативные коэфф. из таблицы:

Таблица 1.7: Нормативные коэффициенты угла внутреннего трения грунта

  • с1 — коэфф. линейности почвы (для песчаных грунтов) либо значение удельного сцепления (для глинистых);
  • y1 — удельный вес почвы расположенной выше лопастей сваи;
  • h1 — глубина расположения сваи;
  • А — диаметр винтовых лопастей за вычетом диаметра столба сваи;
  • fi — сопротивление почвы по боковым стенкам сваи;
  • u — периметр свайного столба;
  • h — общая длина ствола сваи;
  • d — диаметр опорных лопастей.

Предлагаем вашему вниманию характеристики несущих способностей наиболее распространенных в строительстве типоразмеров винтовых свай.

Таблица 1.8: Несущая способность винтовых свай диаметром 76 мм.

Таблица 1.9: Несущая способность винтовых свай диаметром 89 мм.

Как улучшить несущую способность сваи

Среди технологий увеличения несущей способности свайных оснований существуют как универсальные способы, применимые к свай любого типа, так и индивидуальные методы, которые реализуются отдельно для забивных и винтовых конструкций.

Инъектирование грунта

Это максимально эффективный метод увеличение несущих характеристик любых свай расположенных в дисперсных грунтах с невысокой плотностью.

Инъекции в грунт песчано-цементного раствора выполняются в пространство между сваями на глубину в 1-2 метра ниже крайней точки свайного столба.

Для подачи раствора используются специальные строительные инъекторы, при этом раствор нагнетается под постоянно возрастающим давлением (от 2 до 10 атмосфер) в результате чего в грунте создаются полости радиусом до 2 метров.

Рис 1.6: Усиление несущей способности свайного фундамента инъектированием (1 — бетон, 2 — сваи)

Сетка инъекций рассчитывается так, чтобы расположенные по периметру свайного основания бетонные полости примыкали друг к другу.

Совет эксперта! После отвердевания бетона в грунте наблюдается серьезное повышение несущей способности почвы (при качественно реализованной технологии — двукратное).

Увеличение диаметра опорной подошвы сваи

Пята сваи — основная опорная точка заглубленного в грунт столба. При обустройстве свайных фундаментов в грунтах с низкой несущей способностью рационально использовать сваи с уширенной опорной подошвой, так как с увеличением ее диаметра значительно несущие характеристики конструкции.

При обустройстве оснований на сваях винтового типа с этим проблем не возникает, поскольку механизированный способ погружения позволяет завинчивать металлические сваи с достаточно большим диаметром лопастей, тогда как забивные ЖБ сваи с уширением погрузить невозможно ни ударным ни вибрационным методом из-за высокого сопротивления грунта.

Совет эксперта! Для создания опорного уширения забивных ЖБ свай используется два метода — обустройство камуфлетных свай и бурение лидерных скважин буром-расширителем.

Рис 1.7: Схема создания камуфлетных буронабивных свай

Камуфлетные буронабивные сваи — конструкции, уширение в нижней части которых создано посредством взрыва детонирующего вещества внутри лидерной скважины. После камуфлетирования полученное уширение заполняется бетонным раствором и в скважину погружается ЖБ свая.

Наши услуги

Мы, строительная компания «Богатырь», базируемся на услугах: забивка свай, лидерное бурение, забивка шпунта, а так же статических и динамических испытаниях свай. В нашем распоряжении собственный автопарк бурильно-сваебойной техники и мы готовы поставлять сваи на объект с дальнейшим их погружением на строительной площадке. Цены на забивку свай представлены на странице: цены на забивку свай. Для заказа работ по забивке железобетонных свай, оставьте заявочку:

Приложение Е (рекомендуемое). Определение несущей способности свай в просадочных грунтах по их прочностным характеристикам

Е.2 Расчет несущей способности свай в просадочных грунтах рекомендуется производить на основе приближенного решения упругопластической задачи предельного равновесия грунта в основании сваи.

Общая поверхность предельного равновесия основания сваи длиной / состоит из трех участков: верхний участок 1 — вдоль ствола сваи ; нижний участок 2 — по поверхности усеченного конуса вдоль ствола сваи длиной b; участок 3 — под нижним концом сваи по части шаровой поверхности (рисунок Е.1).

Несущая способность определяется по формуле

, (E.1)

где — коэффициент условий работы, принимаемый равным 1;

— сопротивление на участке ствола сваи , кН; где — участок линейного возрастания сопротивления от 0 до 12d, но не более 6 м, а ниже — участок постоянного значения сопротивления, равного конечному значению по длине , кН;

— сопротивление на участке ствола сваи по поверхности усеченного конуса, кН;

— сопротивление под нижним концом, кН.

, (E.2)

где u — периметр сваи, м;

— коэффициент бокового давления грунта, равный 0,5;

— расчетное значение угла внутреннего трения, град.;

c — расчетное значение удельного сцепления грунта, ;

— участок длины сваи, м, равный

, (E.3)

где — длина погруженной части сваи, м;

d — диаметр или сторона поперечного сечения, м;

, м, (Е.4)

где — длина от поверхности земли до начала длины , м;

, м; (Е.5)

а — самый верхний участок погруженной сваи, где боковое давление грунта равно 0, для забивной сваи а = 2,5 м, для набивной а = 1,0 м;

, град., (E.6)

где , ; к=1°;

— минимальное значение сцепления, принимаемое в расчет и равное 5 ; при этом х = 0,2.

Предел применимости формулы (Е.6) дается соотношением . В случае если на большом участке длины сваи прорезаются грунты с разными характеристиками и c, то значение представляется в виде суммы толщин слоев .

вычисляется по формуле

,кН, (Е.7)

где m — число слоев с разными характеристиками.

Если в пределах участка длиной не более 6 м встретится слой с другими расчетными характеристиками и с, то принимаются в расчет их значения для нижнего слоя толщиной не менее 3 м.

, кН, (Е.8)

где , м, (E.9)

где , м; (Е.10)

, kH, (E.11)

где , . (E.12)

Наибольшее главное напряжение определяется по формуле

, (Е.13)

Наименьшее главное напряжение определяется по формуле

, , (Е.14)

где — удельный вес грунта, .

Характеристики грунта , , определяются в водонасыщенном состоянии. При полном водонасыщении грунта, в случаях возможного его замачивания, показатель текучести определяется по формуле

, (Е.15)

где е — коэффициент пористости грунта природного сложения;

— удельный вес воды, равный 10 ;

— удельный вес твердых частиц, ;

, — влажность грунта на границе раскатывания и на границе текучести, доли единицы.

Нижние концы длинных буровых свай в просадочных грунтах, устраиваемые без уплотнения грунта в забое скважин, полностью включаются в работу после достижения критической нагрузки на сваю и дальнейшей ее значительной осадки. Несущую способность длинных буронабивных свай, нижний конец которых полностью не включился в работу, допускается в первом приближении определять по формуле

, кН, (E.16)

где — то же, что и в формуле (Е.1);

— сопротивление на участке ствола сваи , определяемое как для забивной сваи по формуле (Е.2), причем

, м, (Е.17)

где — то же, что и для забивной сваи;

а — для набивной сваи, принимаемое равным 1 м;

— сопротивление под нижним концом сваи

, кН, (Е.18)

где к — экспериментальный коэффициент при диаметре сваи 1 м0,5 м, равный 3;

А — площадь подошвы сваи, ;

— определяется по формуле (Е.13).

Значения характеристик грунта определяются в замоченном состоянии. Несущая способность буронабивной сваи с уширенной пятой определяется по формуле

, кН, (Е.19)

где — то же, что и в формуле (Е.16);

— сопротивление на участке ствола сваи , определяемое как для забивной сваи по формуле (Е.2), причем

Расчет несущей способности сваи

11 Ноябрь 2016 Стройэксперт Просмотров: 8911

Расчет несущей способности сваи

Планируя строительство жилого дома на свайном фундаменте того или иного вида жизненно важно правильно выполнить расчет несущей способности сваи. От качества данной работы зависит не только целостность и надежность строения в целом, но и величина затрат. Рассмотрим основные параметры, влияющие на определение нагрузки, которую может выдержать каждый элемент свайного фундамента дома, и способы выполнения расчетов.

Способы вычисления несущей способности по различным параметрам

Несущая способность сваи зависит от целого ряда параметров. Главные из них – материал опоры и виды грунта, с которыми она контактирует при заглублении. Опираясь на данные характеристики можно легко рассчитать необходимое количество элементов свайного фундамента и их геометрические параметры.

Свайные фундаменты

Среди получивших наибольшее распространение в частном домостроении можно выделить следующие свайные фундаменты:

  • На винтовых сваях;
  • На забивных опорах;
  • С помощью буронабивных свай.

Каждый вариант хорош в тех или иных случаях и может использоваться при строительстве зданий различной конструкции и этажности.

Расчет фундамента на винтовых сваях

Винтовые сваи представляют собой стальные трубчатые опоры, оснащенные в нижней части лопастями, облегчающими процесс внедрения в грунт. Для строительства домов используют элементы диаметром 133, 108 и 89 мм. Более тонкие сваи можно применять для монтажа легких конструкций типа беседок и террас.

Фундамент на винтовых сваях

Несущая способность сваи с лопастями зависит от следующих параметров опоры:

  1. Диаметра трубы;
  2. Длины трубы, погруженной в почву;
  3. Диаметра лопастей, распределяющих конечную нагрузку на грунт.

Даже трубы самого большого диаметра не позволяют использовать их для строений из таких сравнительно тяжелых строительных материалов, как кирпич и бетонные стеновые блоки. Для соответствия нагрузке дома даже на таких мощных почвах, как глиняные шаг установки винтовых свай может составлять 0,3 метра, что невыгодно с точки зрения технологии и экономики строительства.

Особенности фундамента на забивных сваях

Максимально возможная несущая способность забивной сваи позволяет широко использовать подобный вид фундаментов даже при строительстве многоэтажных жилых домов. Это способствует их распространению при возведении конструкций высотой до 40-60 метров.

Применение специализированной строительной техники позволяет использовать опоры, длина боковой поверхности которой может составлять десятки метров. Забитая свая нижним концом опирается на высокопрочные скальные породы, передавая им нагрузку от конструкции дома. Прочность материала опоры достаточна для сохранения ее целостности под такой высокой нагрузкой.

В частном домостроении фундамент на забивных сваях распространен очень слабо. Связано это с высокой стоимостью аренды пневматического забивного оборудования и его операторов. Только в крайних случаях строительные инженеры склоняются в пользу такого вида фундамента для двухэтажных частных домов.

Буронабивные сваи – оптимальный вариант фундамента

Буронабивные сваи аналогичны забивным, но монтаж тела опор осуществляется непосредственно на месте строительства. Для этого в грунте бурится отверстие, в которое опускается полая цилиндрическая опалубка в виде труб. Внутрь устанавливается стальной усиливающий каркас и полость заполняется бетоном. Для увеличения несущей способности сваи возможно изготовление ее нижнего конца в виде полусферического или конического расширения.

Важный аспект – материал, из которого изготовлена опора и способ ее изготовления. Максимальная величина характерна для железобетонных заводских стоек. Несущая способность сваи по материалу в расчетах характеризуется коэффициентами, величина которых определяется по соответствующим таблицам.

Фундамент на буронабивных сваях

В процессе бурения первого или пробного шурфа на месте строительства необходимо как можно тщательнее изучить имеющиеся слои грунта, ибо каждый из видов почв обладает различной несущей способностью сваи. Конкретные цифры по каждому виду почв легко найти в соответствующем ГОСТе, который называется «Грунты. Классификация». Эти величины учитывают, когда определяется несущая способность сваи по грунту.

Буронабивная свая, как и забивная, благодаря плотной посадке в почву нагрузку от конструкции дома передает не только своим нижним концом, но и по всей боковой поверхности. Это отличает их от свайных опор и служит неоспоримым преимуществом. Для более тщательного изучения технологии расчета несущей способности сваи рассмотрим ее на конкретном примере.

Расчет несущей способности сваи в конкретных условиях.

Перед началом строительства дома из пеноблоков были проведены исследования грунта на глубине 3 метров. Результаты показали следующее распределение почв:

  • 0-2 метра – суглинистые почвы;
  • 2-3 метра – глинистые почвы.

Расчет несущей способности сваи по грунту зависит от параметров самой опоры. В соответствии со Строительными правилами «Свайные фундаменты» предположим первоначально ее длину 3 метра. Минимальный рекомендуемый диаметр для таких опор составляет 300 мм.

Исходя их геометрии и почвенных условий, можно рассчитать несущую способность сваи по ее торцевой части и боковой поверхности. Для этого высчитаем площадь нижнего конца опоры:

Sторца=3,14D2/4=3,13*0,3*0,3/4=0,07,

где D – диаметр круга. Следующий параметр, необходимый для определения несущей способности свай – периметр опоры:

U бок=2*3,14*R=2*3,14*0,15=0,94.

Исходя из перечисленного, несущая способность буронабивной сваи по грунту будет определяться по следующей формуле:

Pтор=0,7Pнорм*S=0,7*90*0,07=4,41т,

где Pтор – несущая способность по торцу сваи, 0,7 – общепринятый коэффициент по грунту, Pнорм – нормативная несущая способность (табличная величина из соответствующих справочников), S – площадь основания. Аналогично рассчитаем несущую способность буронабивной сваи по ее боковой поверхности:

Pбок=0,8*U*fiн*h,

где Pбок – несущая способность по боковой поверхности сваи, 0,8 – коэффициент по условиям работы сваи в почве, U – периметр боковой поверхности, fiн – сопротивление грунта воль боковой поверхности (также табличная величина, зависящая от вида грунта и глубины его расположения), h – высота того или иного слоя грунта, через который проходит свая. Подставляя известные и рассчитанные величины получим:

Pбок=0,8* (2,8*2 + 4,8*1)*0,942=7,8т.

Исходя из проведенных вычислений, можем выполнить определение несущей способности свай. Для этого достаточно суммировать Рбок и Ртор:

Р=Рбок+Ртор=4,41+7,8=12,21т.

То есть каждая свая с указанными выше параметрами в том грунте, который располагается в зоне строительства согласно нашему примеру, способна выдержать нагрузку в 12 тонн 210 кг. Исходя из этой величины, необходимо рассчитать необходимое и достаточное количество опор буронабивного фундамента. Для этого определим общую массу строения.

Пример расчета несущей способности свай

Вес дома определяется как сумма веса всех входящих в него частей – перекрытий, перегородок, стен, стропильной системы, кровельного материала, переменной нагрузка от снега и ветра, массы отделки снаружи и внутри строения, а также предполагаемой к установке в доме мебели и бытовой техники. Предположим, что посчитав все искомые величины, получили общую массу строения, равную 124 тонны.

Следующий необходимый параметр – длина стен и перегородок, под которыми предполагается установка свай. Данная величина позволит распределить опоры дома равномерно с равным шагом. Предположим, что длина стен составила 29 метров. Тогда нагрузка на 1 п.м. будет определяться по формуле:

Q=124/29=4,3 т.

Шаг установки опор определим как отношение несущей способности сваи на величину Q:

L=P/Q=12,21/4,3=2,8

Используя полученные данные, рассчитаем и количество опор буронабивного свайного фундамента через отношение периметра стен к шагу установки опор:

N=29/2,8=10,3.

Принимаем ближайшее большее количества для получения определенного запаса прочности фундамента.

Таким образом, даже не обладая необходимым инженерным строительным образованием можно самостоятельно рассчитать несущую способность свай фундаментов того или иного вида, а также шаг установки опор и их количество. Необходимо это и для контроля работ, проводимых нанятой строительной бригадой, и для предварительного экономического расчета расходов на строительство основания дома.

Характерным показателем прочности свайного фундамента является несущая способность отдельно взятой сваи. Эта характеристика влияет на общее количество свай в периметре фундамента – регулируя частотность, можно повышать предел нагрузки, которую будет способен выдержать фундамент. Количество буронабивных свай и несущая способность отдельно взятой свайной колонны это взаимосвязанные характеристики, оптимальное соотношение которых определяется путем проведения несложных расчетов.

Подготовка к расчету

Конструкция буронабивных свай

Исходные данные, которые понадобятся для расчета несущей способности буронабивной сваи, получают в итоге проведения геологических изысканий и подсчета общей предполагаемой нагрузки здания. Это обязательные этапы расчета, проведение которых обосновано теорией расчета прочностных характеристик буронабивных фундаментов.

Такие показатели как глубина промерзания, уровень залегания грунтовых вод, разновидность грунта и его механические характеристики очень важны для получения точного результата. Информация о глубине промерзании грунта находится в СНиП 2.02.01-83*, данные разделены по климатическим районам, представлены картографически и в виде таблиц.

Не стоит полагаться на данные геологической и гидрогеологической разведки, полученные на соседних участках. Даже в пределах периметра одного земельного надела состояние грунтов оснований может резко изменяться. Три-четыре контрольные скважины в контрольных точках периметра дадут точную информацию о состоянии почв.

Расчет массы постройки ведут с учетом климатического района, расположения здания относительно румба ветров, среднего количества осадков в зимний период, массы строительных конструкций и оборудования. Этот показатель наиболее значим при проектировании фундамента – данные для проведения этой части расчета, а также схему и расчетные формулы можно найти в СНиП 2.01.07-85.

Проведение геологии

Шурф для проведения геологических изысканий

Проведение геологических изысканий ответственное мероприятие и в массовом поточном строительстве этим занимаются специалисты-геологи. В индивидуальном жилищном строительстве часто проводят самостоятельную оценку состояния грунтов. Не имея опыта проведения изысканий такого уровня очень сложно оценить реальное положение вещей. Работа грамотного специалиста по большей части заключается в визуальной оценке состояния напластований.

Для начала на участке устраивают шуфры – вертикальные выработки грунта прямоугольного или круглого сечения, глубиной от двух метров и шириной достаточной для визуального осмотра основания стенок ямы. Назначение шуфров – раскрытие почвы с целью осуществления доступа к напластованиям, скрытым под верхним слоем грунта. Геологи измеряет глубину пластов, берет пробу грунта из середины каждого слоя, а также впоследствии наблюдает за накоплением воды на дне забоя. Вместо шуфров могут устраиваться круглые скважины, из которых с помощью специального устройства вынимают керн или берут локальные пробы.

Шуфры укрывают на некоторое время – два-три дня – ограничивая попадание атмосферных осадков. После оценивают уровень воды, поднявшийся в полости скважины – эта отметка, отсчитанная от верхней границы, и будет уровнем залегания грунтовых вод.

Все полученные данные заносятся в сводную таблицу.Кроме того, составляется профиль сечения грунта, который позволяет предугадать состояние грунтов в точках, где бурение не производилось. При самостоятельной оценке оснований следует руководствоваться сведениями, представленными в СНиП 2.02.01-83* и ГОСТ 25100-2011, где в соответствующих разделах представлены классификации грунтов с описаниями, методы визуального определения типов грунта и характеристики в соответствии с типами.

Как использовать данные геологической разведки

Поле буронабивных свай

После того как проведена геология местности – самостоятельно или нанятыми специалистами – можно приступать к определению начальных геометрических характеристик свай.

Нас интересуют тип грунта, показатель коэффициента неоднородности грунта, глубина промерзания и уровень расположения грунтовых вод. Схема расчета несущей способности буронабивной сваи для различных типов грунтов находится в приложениях СП 24.13330.2011.

Глубина заложения сваи должна быть как минимум на полметра ниже глубины промерзания, чтобы предотвратить воздействие морозного пучения грунтов на опорную часть колонны. Средняя глубина промерзания в центральной полосе России 1,2 метра, значит, минимальная длина сваи должна составлять в таком случае 1,7 метра. Значение меняется для отдельно взятых регионов.

Не только относительная влажность, но и взаимное расположение нижней отметки промерзания грунта и глубины залегания грунтовых вод. В холодное время года высоко расположенные замерзшие грунтовые воды будут оказывать сильное боковое давление на тело свайной колонны – такие грунты сильно деформируются и считаются пучинистыми.

Некоторые грунты, характеризующихся как слабые, высокопучинистые и просадочные, не подходят для устройства свайных фундаментов – для них больше подходят ленточные или плитные фундаменты. Определить тип грунта, а также тип совместимого фундамента, значит исключить скорое разрушение конструкций. Показатели неоднородности грунта, указанные в таблицах вышеперечисленных нормативных документов, используются в дальнейших расчетах.

Расчет общей нагрузки

Сбор нагрузок позволяет определить массу здания, а значит усилие, с которым постройка будет воздействовать на фундамент в целом и на его отдельно взятые элементы. Существует два типа нагрузок, воздействующих на опорную конструкцию – временные и постоянные. Постоянные нагрузки включают в себя:

  • Массу стеновых конструкций;
  • Суммарную массу перекрытий;
  • Массу кровельных конструкций;
  • Массу оборудования и полезной нагрузки.

Посчитать массу конструкций можно, определив объем конструкций, и умножив его на плотность использованного материала. Пример расчета массы для одноэтажного здания с железобетонными перекрытиями, кровлей из керамической черепицы и со стенами 600 мм из железобетона, размерами 10 на 10 метров в плане, высотой этажа 2 метра:

  • Вычисляем объем стен, для этого умножаем площадь поперечного сечения стены на периметр. Получаем V стены = 20 ∙ 2 ∙ 0,6 = 24 м3. Полученное значение умножаем на плотность тяжелого бетона, которая равняется 2500 кг/см3. Итоговая масса стеновых конструкций умножается на коэффициент надежности, для бетона равный k = 1,1. Получаем массу M стены = 66 т.
  • Аналогично считаем объем перекрытий(подвального и чердачного),масса которых при толщине 250 мм будет равняться Мпк = 137,5 т, с учетом аналогичного коэффициента надежности.
  • Вычисляем массу кровельных конструкций. Масса кровли для 1 м2 металлочерепицы – 65 кг, мягкой кровли – 75 кг, керамической черепицы – 125 кг. Площадь двускатной кровли для здания такого периметра будет составлять примерно 140 м2, а значит масса конструкций составит Мкр = 17,5 т.
  • Общий размер постоянной нагрузки будет равняться Мпост = 221 т.

Коэффициенты надежности для различных материалов находятся в седьмом разделе СП 20.13330.2011. При расчете следует учитывать массу перегородок, облицовочных материалов фасада и утеплителя. Объем, который занимают оконные и дверные проемы не вычитают из общего объема для простоты вычислений, поскольку он составляет незначительную часть общей массы.

Расчет временных нагрузок

Ростверк на винтовых сваях

Временные нагрузки рассчитываются в соответствии с климатическим районом и указаниями свода правил «Нагрузки и воздействия». К временным относятся снеговая и полезная нагрузки. Полезная нагрузка для жилых зданий составляет 150 кг на 1 м2 перекрытия, а значит общее число полезного веса будет равняться Мпол = 15 т.

Масса оборудования, которое предполагается установить в здании, также суммируется в этот показатель. Для определенного типа оборудования применяется коэффициент надежности, расположенный в вышеуказанном своде правил.

Существуют различные типы особых нагрузок, которые также необходимо учитывать при проектировании. Это сейсмические, вибрационные, взрывные и прочие.

Снеговая нагрузка определяется по формуле:

где ce – коэффициент сноса снега, равный 0,85;

ct – термический коэффициент, равный 0,8;

m – переходный коэффициент, для зданий в плане менее 100 м принимаемый по таблице Г вышеуказанного СП;

St – вес покрова снега на 1 м2. Принимается по таблице 10.1, в зависимости от снегового района.

Показатели временных нагрузок суммируются с постоянными и получается количественный показатель общей нагрузки здания на фундамент. Это число используется для расчета нагрузки на одну свайную колонну и сравнения предела прочности. Для удобства расчета и наглядности примера примем временные нагрузки Мвр = 29 т, что в сумме с постоянными даст Мобщ = 250 т.

Посмотрите видео, как правильно рассчитать нагрузку на основание.

Определение несущей способности сваи

Геометрические параметры сваи и предел прочности это взаимосвязанные величины. В данном примере, нагрузка на один метр фундамента будет составлять 250/20 = 12,5 тонн.

Расчет предела предела нагрузки на отдельно взятой буронабивной сваи ведут по формуле:

где F – предел несущей способности; R – относительное сопротивление грунта, пример расчета которого находится в СНиП 2.02.01-83*; А – площадь сечения сваи; Eycf, fi и hi – коэффициенты из вышеуказанного СНиП; y – периметр сечения свайного столба, разделенный на длину.

Посмотрите видео, как проверить несущую способность сваи с помощью профессионального оборудования.

Для сваи полутораметровой длины диаметром 0,4 метра несущая способность будет равняться 24,7 тонны, что позволяет увеличить шаг свайных колонн до 1,5 метров. В таком случае нагрузка на сваю будет составлять 18, 75 тонн, что оставляет довольно большой запас прочности. Изменением геометрических характеристик, а также шага свайных колонн регулируется несущая способность. Данная таблица, представленная ниже, показывает зависимость несущей способности полутораметровой сваи от диаметра:

Зависимость несущей способности от ширины сваи

Существует масса сервисов, позволяющих провести расчет несущей способности сваи онлайн. Пользоваться следует только проверенными порталами, с хорошими отзывами.

Важно не превышать допустимую нагрузку на сваю и оставлять запас прочности – немногие сервисы умеют планировать распределение нагрузки, поэтому следует обратить внимание на алгоритм расчета.

About the author

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *