Нивелир устройство

7 Нивелирование. Нивелир и его устройство. Сущность и методы геометрического нивелирования

План лекции:

1.Сущность и способы геометрического нивелирования;

2. Последовательное нивелирование;

3. Типы нивелиров и их поверки.

Сущность и способы геометрического нивелирования: геометрическое нивелирование производится для определения превышений одной точки над другой, близкой к ней, при помощи горизонтального луча нивелира и отвесно установленных в этих точках реек. По полученным превышениям и по данной отметке начальной точки вычисляют отметки всех остальных точек местности. Существуют два способа геометрического нивелирования: из середины и вперед (рисунок 7.1).

Рисунок 7.1 -Способы геометрического нивелирования

Нивелирование из середины. Для определения превышения h точки В над точкой А нивелированием из середины устанавливают нивелир между этими точками на одинаковых расстояниях и приводят визирную ось прибора в горизонтальное положение. В точках А и В устанавливают отвесно рейки с сантиметровыми делениями, оцифрованными снизу вверх. Зрительную трубу нивелира наводят последовательно на рейки и делают по ним отсчеты а и b, что

h = а — b.

(7.1)

Если нивелирование производится в направлении от точки А к точке В, то превышение равно разности отсчетов по задней и передней рейкам.

Нивелирование вперед. Для определения превышения h нивелированием вперед нивелир устанавливают в точке А так, чтобы окуляр зрительной трубы находился на одной отвесной линии с этой точкой. Над точкой В устанавливают рейку.

Приводят визирную ось зрительной трубы в горизонтальное положение, измеряют высоту i нивелира от центра окуляра до точки А и делают отсчет b — по передней рейке.

Превышение получают по формуле h = i—b.

Высоту прибора измеряют стальной рулеткой или отсчитывают по рейке.

Последовательное нивелирование

При нивелировании крутых скатов определить превышение между двумя точками с одной станции нельзя, так как визирный луч зрительной трубы будет проходить выше рейки или бить в землю. В этом случае намечаются дополнительно одна или несколько связующих точек, в зависимости от крутизны ската, которые называются иксовыми точками, они служат для передачи отметки с задней точки на переднюю.

Точки 1, 2, 3, … называются связующими точками. Точки постановки нивелира называются станциями (рисунок 7.2).

Рисунок 7.2 -Схемы последовательного нивелирования

Связующие точки на местности намечаются через равные интервалы, обычно через 100м, и они часто не совпадают с перегибами рельефа, а для составления профиля надо знать отметки этих точек, которые называются промежуточными .или плюсовыми. Обозначаются промежуточные точки числом метров, соответствующим расстоянию от задней точки.

Нивелиры по точности делятся на три типа: высокоточные для нивелирования I и II классов, точные для нивелирования III и IV классов и технические, предназначенные для инженерно-технических работ.

По конструкции различают нивелиры, визирная ось которых устанавливается в горизонтальное положение при помощи цилиндрического уровня, и нивелиры с самоустанавливающейся горизонтальной линией визирования.

Нивелир Н-3 имеет следующие части: окуляр, зрительная труба, цилиндрический уровень, мушка для приближенного наведения на рейку, объектив, кремальера для фокусирования трубы, закрепительный винт трубы, наводящий винт трубы, круглый уровень, исправительные винты круглого уровня (их три), элевационный винт, подставка (трегер), подъемный винт, пружинистая пластинка со втулкой.

Круглый уровень служит для приближенной установки оси нивелира в отвесное положение. Элевационный винт служит для точной установки визирной оси нивелира в горизонтальное положение. В коробке цилиндрического уровня, сверху над уровнем, расположена система оптических призм, с помощью которых изображение концов пузырька уровня передается в поле зрения трубы. Установка пузырька уровня на нуль-пункт достигается путем совмещения (контакта) изображений концов его половинок вращением элевационного винта. Такой уровень называется контактным.

Зрительная труба нивелира имеет внутреннюю фокусировку, увеличение трубы 30х, поле зрения 1˚20′. Цена деления круглого уровня 5′, цена деления цилиндрического уровня на 2 мм— 15″. Коэффициент дальномера— 100.

Поверки и юстировка нивелира Н-3

1. Ось круглого уровня должна быть параллельна оси вращения нивелира. Подъемными винтами приводят пузырек круглого уровня в центр кружка на коробке уровня и поворачивают верхнюю часть нивелира вокруг его оси на 180°. Если пузырек останется в центре, то условие выполнено.

В противном случае исправительными винтами уровня перемещают пузырек к центру на половину его отклонения, а подъемными винтами приводят его в нуль-пункт.

2. Горизонтальная нить сетки должна быть перпендикулярна оси вращения нивелира. Среднюю нить сетки наводят на ясно видимую точку, расположенную в 25—30м от нивелира, и наводящим винтом плавно вращают трубу. Нить сетки не должна сходить с выбранной точки. При несоблюдении условия необходимо ослабить винты, скрепляющие сетку с корпусом трубы, и повернуть сетку в нужную сторону.

3. Ось цилиндрического уровня должна быть параллельна визирной оси трубы. Поверка этого главного геометрического условия производится двойным нивелированием одной и той же линии с разных ее концов.

Ошибка за не параллельность оси цилиндрического уровня и визирной оси зрительной трубы вычисляется по формуле:

(7.2)

Если величина х не превышает 4мм, то исправление не проводится. В противном случае при помощи элевационного винта наводят среднюю нить сетки на исправленный отсчет b = b2 —х и вертикальными исправительными винтами цилиндрического уровня совмещают изображение концов пузырька уровня (рисунки 7.3 и 7.4).

Рисунок 7.3 -Схемы поверки оси цилиндрического уровня

Рисунок 7.4 — Нивелирная рейка и рейка в поле зрения трубы

Основы геометрического нивелирования

В работе с нивелиром применяют ряд специальных методов, которые позволяют добиваться наиболее точных результатов измерений. Специалисты используют метод нивелирования из середины и метод нивелирования вперед. Согласно первому методу работы нивелира, отсчет показаний производится по геодезическим рейкам. Они устанавливаются в определенных точках стояния. Обычно это положение спереди и сзади самого прибора. Данные, которые были получены нивелиром, записывают в журнал измерений. Этот метод стал основным при проведении строительных работ.

Второй метод предполагает брать за основу урез воды любого водоема и сопоставлять с уровнем мирового океана. В этом случае геодезист имеет дело с условной системой высот. Ее точности не хватает, чтобы провести полномасштабные измерения на строительном объекте, однако он практически идеально подходит для локальных измерений, где не требуется жесткая привязка высот здания с другими региональными системами.

Тригонометрическая нивелировка

Рисунок 2. Тригонометрическое нивелирование. Автор24 — интернет-биржа студенческих работ

Тригонометрическая нивелировка строится на принципе использования в работе теодолита и тахеометра. Эти точные измерительные приборы считывают превышение угла от горизонта до верхнего края используемой рейки. Подобный способ измерения часто используют при выявлении высот опор линий электропередач и других подобных высоких нестандартных объектов. Такой способ нивелировки позволяет производить максимально точные расчеты превышений, где есть большие расстояния между объектами и присутствуют углы рельефа местности.

Для тригонометрической нивелировки используют ряд значений величин, с помощью которых составляются формулы высоты измерения. При определении результата вычислений используется угол луча по отношению к горизонту, высота измерительного прибора, длина отрезка визирной линии и горизонт линии.

Инструменты для проведения нивелирования

В зависимости от выбранного метода нивелирования и поставленных задач необходимо выбрать оборудование. Это могут быть оптические, цифровые и лазерные нивелиры, тахеометры, теодолиты. Для достижения максимальной точности оборудование должно быть высокого качества и от проверенных производителей. Инженеры компании «Геодезия и Строительство» помогут выбрать среди разнообразия инструментов, а также проведут обучение при необходимости.

Гидростатическое нивелирование

Для измерений используют свойства жидкости в сообщающихся сосудах. Жидкость всегда находится на одном уровне в них, вне зависимости от высоты. Высокая точность измерений (0,1 мм) позволяет использовать гидростатические нивелиры в строительных работах, при наблюдении за деформациями сооружений и т.д. Возможно использование на расстоянии, ограниченном длиной трубок, соединяющих сосуды.

Радиолокационное нивелирование

Производится с помощью установленных на воздушных и водных суднах эхолотов и высотомеров. С их помощью автоматически определяется профиль пройденного пути.

Спутниковое нивелирование

Для проведения используются GNSS-приемники. Превышения определяются с помощью измерений аппаратурой, использующей спутниковые системы ГЛОНАСС, GPS, BeiDou, Galileo, QZSS, SBAS и т.д. Точность определения превышений статическим методом может достигать первых миллиметров. Может применяться для создания сетей сгущения, топографических съемок и других видов работ.

Геодезический мониторинг

Рассмотрим подробнее наблюдения за деформациями, а именно использование нивелиров для определения осадок. В настоящее время данные работы получили широкое распространение в связи с активным строительством сложных инженерных сооружений. Точность измерений, как правило, регламентируется техническим заданием или проектной документацией. Согласно ГОСТ 24846-2012. «Грунты. Методы измерения деформаций оснований зданий и сооружений»: точность измерения вертикальных и горизонтальных деформаций следует определять в зависимости от ожидаемого значения перемещения, установленного проектом либо от категории зданий и сооружений.

Рекомендуемое оборудование для измерения вертикальных деформаций

Класс нивелирования I II III IV
Допускаемая погрешность измерения вертикальных перемещений 1 мм 2 мм 5 мм 10 мм
Рекомендуемые нивелиры TrimbleDiNi (0.3) TrimbleDiNi (0.7) Bosch GOL 26D*
Bosch GOL 32D*
Рейки Рейка инварная LD11 (1 м.)
Рейка инварная LD12 и LD12b (2 м.)
Рейка инварная LD13 и LD13b (3 м.)
Деревянные, фиберглассовые или дюралюминиевые рейки
Штативы Штатив деревянный, фиксированной длины, а также универсальные штативы Нивелирные или универсальные штативы
Программное обеспечение CREDO Нивелир Trimble Business Center Base
Прочее оборудование 1. Держатели реек (например бипод телескопический 3 м или бипод телескопический 2 м для инварных реек или биподы ROD)
2. Термометр-пращ
3. Нивелирные костыли со сферической головкой
4. Нивелирные башмаки
5. Стальная рулетка от 50 до 100 м (например N2020-50 и Seco)

* При количестве станций в ходе не более 10.

Стоит отметить, что погрешность измерения вертикальных перемещений прямо пропорциональна количеству штативов в ходе и средней квадратической погрешности определения отметки деформационного репера (марки). Поэтому при необходимости наблюдения большого числа деформационных реперов (марок) использование нивелиров низких классов точности не позволит достичь требуемого результата. Для работ по наблюдению за деформациями мы рекомендуем использовать нивелиры с запасом точности, которые представляют собой универсальные инструменты в сфере геодезического мониторинга, вместе с оригинальными аксессуарами. А также дополнительные аксессуары, например, светодиодная подсветка Nedo для инварной рейки. Использование данного аксессуара позволит выполнять измерения в слабоосвещённых местах, например, в шахтах, туннелях или ночных строительных площадках.

Классы нивелирования

Существуют разные классы нивелирования. Ключевыми высотными основами являются первый и второй класс.

Нивелирование первого класса имеет высокую точность работ. Данный результат можно получить только с применением качественных современных геодезических устройств, с помощью которых можно проводить данные измерения. И только ультрасовременные разработки позволят не допускать даже мелких погрешностей и даже стандартных ошибок.

Конструкция данного оборудования включает в себя плоскопараллельную пластину, выступающую в роли составного элемента микрометра. Данную деталь ставят перед объективом движущейся зрительной трубы, а еще такой оптический нивелир должен быть оснащен компенсатором или же контактным уровнем, в котором пузырек отличается в поле зрения трубы. Есть несколько видов оптических нивелиров, которые применяются для выполнения работ первого класса. Все их функциональные особенности целиком должны соответствовать всем нужным требованиям.

Для проведения нивелирования второго класса тоже нужно применять высокоточные оптические приборы. Их конструкция предусматривает наличие плоскопараллельных пластин, а также компенсатора или же контактного уровня. Как и в предыдущем случае, есть специальные виды приборы для этой работы, но также можно применять и те устройства, что прошли сертификацию и имеют требуемый уровень точности.

Чтобы выполнять измерения третьего класса, нужен оптический нивелир, оснащенный встроенным компенсатором, а для четвертого класса нужен прибор с уровнем и компенсатором. В зависимости от классификации нивелирования, оптические приборы бывают таких видов:

  • высокоточные;
  • точные;
  • технические.

Для работ по измерению перепадов точек земной поверхности (нивелирования), а также для определения горизонтальных направляющих при ремонтных, монтажных, строительных любительских и профессиональных работ предназначен этот геодезический инструмент – нивелир. Этот прибор является одним из самых несложных в использовании среди всего геодезического инструментария.

Основная классификация выделяет три класса нивелиров:

  • оптические – конструкция содержит визирную трубу прямого или прямого и обратного изображения на проградуированной сетке;
  • лазерные – их работа заключается в проецировании горизонтального и вертикального красного луча на плоскости;
  • цифровые – высокотехнологичные профессиональные инструменты, реализующие возможность автоматических замеров по штрих-кодам, нанесенным на специальную рейку.

Ведущие сферы применения: дорожные и дорожно-строительные работы, метрическая и картографическая съемка местности, топогеодезия, геологическая разведка, ремонтно-монтажные и бытовые измерения.

В один из подклассов оптических и лазерных приборов выделяются нивелиры с компенсатором.

Устройство нивелира с компенсатором

Весьма упрощенно оптический нивелир можно рассматривать как подзорную трубу: корпус, окуляр оператора и объектив. Система оптико-механических компонентов позволяет увидеть увеличенное изображение нивелирной рейки на фоне жестко закрепленной сетки нитей.

В корпус нивелира встроены две стеклянные призмы (входная и выходная), а также зеркальная поверхность, закрепленная на нитях-торсионах и постоянно находящаяся в «плавающем» по горизонтали положении при незначительном наклоне нивелира.

Визирная ось устройства для оператора совпадает с центром перекрестия сетки нитей и всегда должна быть перпендикулярна оси вращения трубы.

Лазерные нивелиры с компенсатором принципиально отличаются от оптических — они не имеют традиционной оптической системы и оборудованы самовыравнивающимся компенсатором:

  • автоматическим магнитным — гашение колебаний осуществляется за счет магнитного поля закрепленных на компенсаторе магнитов;
  • автоматическим электронным – выравнивание компенсатора осуществляется следящими приводами, в случае критическим отклонений происходит сигнализация и автоматическая настройка параметров.

Устройство нивелира с компенсаторами в случае возникновения проблем требует ремонта и настройки в специализированных мастерских и сервисных центрах.

Области применения нивелиров

Первым шагом в выборе комплекта для нивелирования является определение сферы его применения. Вот перечень наиболее распространенных видов нивелирных работ:

  1. Создание нивелирных сетей
  2. Геодезический мониторинг (наблюдение за деформациями)
  3. Строительство

В свою очередь, каждый из этих видов работ можно разделить на подвиды (классы).

Нивелирование 4 класса методом средней нити

Для начала прибор приводится в рабочее положение посредством цилиндрического или контактного уровня. Потом зрительная труба наводится на поверхность темной стороны задней рейки, а пузырек уровня приводится в «нуль-пункт» элевационными или подъемными винтами. Отсчет можно снять посредством дальномерных и средних штрихов.

Таким же образом нужно выполнить съемку во время наведения трубы на поверхность темной стороны передней рейки, а затем на поверхность красной стороны передней части, а потом — на поверхность темной стороны задней части.

При условии применения оптического прибора с компенсатором следует, прежде всего, установить устройство в рабочее положение, а также проконтролировать нормальнее рабочее положение компенсатора. И только после этого приступать к процессу съемки.

Во время съемки все фиксируйте в полевом журнале. Удобнее всего применять для этого запоминающее устройство регистратора. Если была определена разница в значениях более 5 мм, то измерения проводят заново, при этом следует изменить высоту приборы как минимум на 3 см. По окончании полевых работ подсчитайте невязки по линии между исходными реперами. Это значение должно быть от 20 мм, все результаты нужно вносить в ведомость повышений.

Итак, выше были рассмотрены особенности и принцип работы оптического нивелира, который часто используется при строительных работах. В настоящее время альтернативы такому прибору не существует, поэтому при проведении геодезических работ он долго еще будет являться наиболее актуальным.

Преимущества и недостатки

Автоматические компенсаторы угла наклона имеют существенные преимущества перед используемыми издавна цилиндрическими уровнями:

  • нет необходимости постоянного контроля уровня отклонения прибора от горизонтального или вертикального положения;
  • работа становится более стабильной;
  • измерения выполняются быстрее и обеспечивают более точные и надежные показатели.

Из недостатков можно назвать:

  • возможность сбоя компенсирующей системы, невозможность устранения неполадок на месте;
  • наличие блокиратора, который не позволит выполнять измерения при превышении допустимых значений отклонений;
  • нестабильная работа и существенные отклонения в показаниях прибора компенсатором с магнитным демпфером вблизи линий электропередачи: побочные электромагнитные наводки оказывают серьезное влияние.

В настоящее время нивелиры с компенсаторами гораздо более востребованы и распространены, нежели приборы с цилиндрическими уровнями.

Как выбрать?

Ориентироваться на выбор прибора с магнитным или воздушным демпфером следует исходя из:

  • видов предполагаемых работ;
  • требуемой точности измерений – погрешность определения превышения высоты на тысячу километров, определяющее кратность изображения увеличение зрительной трубы;
  • места проведения измерений, климатических условий и возможности возникновения побочных магнитных полей, мешающих корректной работе магнитного компенсатора;
  • класса защиты корпуса, предохраняющий прибор от неблагоприятных климатических осадков и пылевых загрязнений;
  • внешнего вида устройства и качества комплектующих компенсаторной системы, которое, увы, при покупке визуально оценить невозможно, но можно полагаться на известность торговой марки: мировые бренды дают гарантию использования только качественных и надежных компонентов.

Не последним фактором приобретения нивелира с компенсатором является и его стоимость, и тут следует помнить: надежные и точные нивелиры известных производителей не могут стоить дешево.

About the author

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *