Силикатные кирпичи

Основным кладочным строительным материалом при строительстве самых разных конструкций является кирпич. Сегодня этот искусственный камень производится из различного сырья и по сырьевому признаку делится на несколько видов. В пределах вида кирпич подразделяется на разновидности, согласно сфере применения. Независимо от вида и предназначения весь производимый кирпич характеризуется марками.

Терминология

Этим термином обозначается два понятия.

  • Прочность кирпича к нагрузке и деформации (сжатию, растяжению, изгибу). Показывает, какую нагрузку в килограммах на квадратный сантиметр поверхности выдержит кирпич, без ухудшения характеристик или нарушения целостности. Маркируется как М кг/см². Существует 8 основных марок прочности от М-50 до М-300. Клинкерный кирпич может еще иметь прочность М-500 и М-1000. Иногда на кирпич ставят клеймо в виде цифры, которая означает марку кирпича на прочность.
  • Морозостойкость кирпича. Показывает, сколько циклов полного промерзания и оттаивания выдержит кирпич, до того, как начнет разрушаться. Маркируется как F или Мрз. Выпускаются марки от F-15 до F-300.

Стандартизация

Марки прочности и морозостойкости регламентируются ГОСТами: партия кирпича проходит испытания, по результатам которых ей присваивается марка. Обычно наугад выбирают по 5 кирпичей из партии. Для определения прочности им дают предельные нагрузки и проверяют на изгиб и на сжатие. Для проверки морозостойкости кирпич в течение 8 часов выдерживают в воде, насквозь промораживают, опять в воду. Сколько он выдержит, пока не изменятся стандартные характеристики, такова и марка морозостойкости.

Марки кирпича и их характеристики

Марки кирпича

Марка кирпича во многом зависит от исходного сырья и способа производства. Показатели для разных видов кирпича выглядят следующим образом:

Применение кирпича согласно марочным показателям

Оптимальным кирпичом для частного малоэтажного строительства является кирпич М-100 или М-150. Его прочности достаточно для возведения несущих конструкций до 3 этажей. Кирпич с меньшей прочностью актуален для межкомнатных перегородок или зданий с минимальной нагрузкой – веранды, беседки, подсобные помещения. Кирпич М-200 применяется для многоэтажного строительства, а из М-300 возводят фундаменты и цоколя для высоток.

Для экономии средств, при строительстве частного одноэтажного или двухэтажного дома можно цоколь выложить из М-150, а общее полотно гнать из М-100. В продаже в широком ассортименте представлены именно марки с 75 по 150, самый же ходовой товар – сотка (М-100).

Что касается морозостойкости, необходимо учитывать наши климатические условия. Когда за сутки столбик термометра прыгает в разные стороны и утренний дождь к обеду превращается в ледяное полотно, прочно окутывающее все вокруг, количество циклов за сезон может шибко превысить рассчетные. Если вдуматься, для районов Севера все проще – у них замораживает осенью и попускает поздней весной, поэтому за сезон получается четкий цикл. Для средней же полосы, использование для стройки наружных стен менее чем F-50 просто нерационально: вы еще и состариться не успеете, а кирпич уже пойдет трещинами, начнет сыпаться и требовать капремонта.

Особенности разных видов кирпича

Кроме показателей прочности и морозостойкости, существуют некоторые особенности, характерные для разных видов кирпича, которые ограничивают их применение.

Силикатный кирпич – при равных, с керамическим, марках, он гораздо сильнее впитывает влагу, поэтому из него не возводят фундаменты и цоколя, а если местность «мокрая», частые и длительные осадки, близкое залегание грунтовых вод, то силикат лучше вообще, не использовать. Зато для межкомнатных перегородок этот кирпич будет самое оно: он лучше остальных глушит звук.

Клинкерный кирпич – самый прочный и морозостойкий из всех, к тому же у него декоративная, разнотонная поверхность. Казалось бы – идеальный вариант, строй себе сразу из него и не будет необходимости делать облицовку. Однако: он самый дорогой из всех видов, и у него высокая теплопроводность, так что к его стоимости придется прибавить расходы на обязательную теплоизоляцию.

Гиперпрессованный кирпич – прочный, морозостойкий, декоративный. К недостаткам относят его «молодость»: появился последним, и пока неизвестно, как поведет себя здание из гиперпресса через двадцать лет. Кроме того, отличается большой массой, поэтому требует возведения усиленного монолитного фундамента.

Шамотный кирпич — прочный, бывает и декоратиным, относительно морозостойкий, огнеупорный, но дорогой, поэтому, в силу своих особенностей, применяется в основном при строительстве печей, мангалов, барбекю.

Как итог можно отметить оптимальное соотношение всех данных керамики: прочный, долговечный (проверено еще царем Горохом), достаточно теплый, доступный. Современное исполнение керамического кирпича предполагает и разные цвета, и структурированные поверхности и декоративные покрытия. Каждый выбирает и решает для себя. Независимо от вида кирпича и заявленных характеристик, главное, чтобы он был качественным. Бракованный, хоть керамика, хоть силикат, хоть гипер или клинкер – бяка, а не кирпич.

Предыдущая статья: Гиперпрессованный кирпич Следующая статья: Полнотелый и пустотелый кирпич

История появления кирпича

Кирпич является самым древним строительным материалом, таким же, как и дерево. Упоминание о нем хранит в себе Библия и Ветхий завет. Этим материалом люди стали пользоваться после потопа. Самая древняя находка из обожженного кирпича была обнаружена в Словакии 25 тысяч лет назад. Самым древним видом кирпича считается тот, который использовали в Среднем Востоке 10 тысяч лет назад. В его состав входила глина и смола. Первыми обожженными кубиками начали пользоваться в Египте еще 2-3 тысячи лет до н.э.

Классы морозостойкости

Этот показатель определяет, какое количество замораживаний и оттаиваний может выдержать СК без существенной утраты внешнего вида – появления шелушений, сколов, или потери технических характеристик. Допустимым считается снижение показателя прочности на 25% для рядового блока и 20% для облицовочного.

  • В испытаниях участвуют не менее 20 образцов материала из партии. 10 из них являются шаблонами для сравнения и удерживаются в гидравлической ванной во время исследований. Перед экспериментом образцы насыщаются водой, то есть, выдерживаются под толщей воды в 2 см не менее 48 часов, а затем взвешиваются.
  • Морозильную камеру заполняют не более, чем на 50%. Началом опыта является достижение в ней температуры в -15 С. В течение не менее чем 4 часов она должна удерживаться на уровне от -15 до -20 С. Затем замороженные пробы помещают в сосуд с водой при температуре +20 и выдерживают до полного оттаивания. Температура поддерживается термостатом.
  • Такой цикл называют полным, он длится не менее 24 часов. После каждого цикла образец осматривается на предмет внешнего разрушения. Класс морозостойкости присуждается по тому числу циклов, которые СК выдержал без разрушения. Также проводится проверка на прочность и опытного образца и эталона.

По ГОСТу выделяют следующие классы:F15, F25, F35, F50, что соответствует числу возможных циклов и, по сути, указывает на долговечность СК.

К использованию допускается рядовой кирпич любой марки. А вот облицовочный по ГОСТ должен иметь показатель не менее 25.

Марки прочности и морозостойкости – вполне объективные и надежные показатели материала. Эти данные нужно обязательно учитывать при выборе.

Про прочность и морозостойкость, а также применение такого силикатного кирпича в строительстве расскажет следующее видео:

Состав газосиликатных блоков.

Газосиликат был разработан еще в двадцатых годах девятнадцатого века. С тех пор технология производства и состав газосиликатных блоков претерпели некоторые изменения в лучшую сторону, но суть осталась. Рассмотрим некоторые тонкости производства ячеистого бетона.

Газосиликаты производятся исключительно способом синтезного твердения в автоклавах, поэтому занимают лидирующие позиции в ряде эксплуатационных характеристик среди прочих стройматериалов. Химический состав газосиликатных блоков регламентирован ГОСТом 25485-89 (новый ГОСТ 31359-2007). В отличие от газобетона в газосиликате используются другие смеси. Вяжущий элемент представляет собой смесь с преимущественным содержанием негашеной извести (SO3 ― 1.0 %, CO ― 4.0 %, МgO 2.0 %, CaO 75 % от общего веса). Наполнителем рабочей смеси здесь является кварцевый песок (85% ― SiO2, а также дополнительные элементы: CaO – 10%, Al2O3 – 7%, МgO – 3%, Fe2O3 – 3%, Na2O – 2%, SO3 – 1% от общего веса). Как газообразователь применима алюминиевая паста, содержащая не менее 90% активного металла с размером фракций в 45 мµ. В состав газосиликатных блоков входит порядка 8-9% алюминиевой пасты, Вода должна быть ограничена по жесткости, а твердая смесь по щелочности (рН 12 и более).

Конечно, отечественные ГОСТЫ являются ни чем иным как международной рецепцией. Они определяют условный состав, который может меняться в зависимости от производителя в допустимых пределах. От этого и от качества расходных материалов во многом зависит качество готовой продукции.

В этих сложных химических процессах происходит полное связывание активного алюминия, поэтому газосиликат экологичен и безопасен для здоровья. Известь, входящая в состав газосиликатных блоков, позволяет добиться мелкоячеистой структуры, придающей блокам выдающиеся механические и теплофизические свойства.

Смешивание производится в специальных формочках. Алюминиевый порошок начинает реагировать с водой и гидроокисью кальция, при этом выделяется водород. Образуются пузыри, т.е. ячеистая структура, наделяющая блоки такими уникальными свойствами, как малый вес, высокая прочность, парообмен и теплоизоляция.

Одних ингридиентов для изготовления блоков недостаточно. Чтобы достичь высокого качества необходимо специальное оборудование – автоклавы, в которых под воздействием высокого давления и температур происходит затвердевание. Мягкие блоки на 12 часов помещаются в автоклавную печь. Там состав газосиликатных боков окончательно стабилизируется и затвердевает под давлением в 12 баров и при температуре 374° по фаренгейту. В таких условиях происходит последняя реакция песка с гидроокисью кальция. Формируется гидрат кварца кальция, обеспечивающий высокую прочность. После этих процессов блоки, в которых только 20% от объема имеют массу, готовы к использованию.

Силикатный ячеистый бетон автоклавного твердения.

Силикатный ячеистый бетон автоклавного твердения на основе аргиллита относится к эффективным строительным материалам. Цель изобретения ― улучшение физико-механических свойств материала и экономических показателей его производства. При производстве бесцементного ячеистого бетона автоклавного твердения в качестве кремнеземистого компонента, применен аргиллит при следующем содержании компонентов в ячеисто-бетонной смеси, %: известь ― кипения 10 ― 25; аргиллита 75 ― 90; алюминиевая пудра сверх 100% извести и аргиллита и воды до оптимальной текучести смеси. С применением аргиллита в качестве кремнеземистого компонента синтезируется новое цементирующее вещество с новыми физико-механическими свойствами при минимальных затратах материальных, в первую очередь топливо-энергетических ресурсов. При одинаковой плотности марка материала по прочности увеличивается в среднем в 1,7 раза, улучшается водостойкость материала. Себестоимость материала уменьшается на 25 ― 30%. Уменьшается вес конструкции здания и транспортные расходы по доставке материала на стройплощадку. Уменьшаются эксплуатационные расходы на восстановление рабочих органов помольного оборудования.

Изобретение относится к строительству, а именно к отрасли промышленности строительных материалов.

Силикатный ячеистый бетон является строительным материалом и может быть использован для строительства зданий и сооружений как теплоизоляционный, теплоизоляционно-конструктивный и конструкционный строительный материал. Кроме этого, предлагаемый новый материал может быть применен в качестве теплоизоляционного и звукопоглощающего материала. Силикатный ячеистый бетон как эффективный строительный материал может быть использован в жилищном строительстве, в особенности в малоэтажном индивидуальном, а также в сельскохозяйственном, промышленном и гражданском строительстве.

В настоящее время известно большое количество строительных материалов, применяемых в ограждающих конструкциях зданий и сооружений, как традиционных, так и новых. Это такие материалы как кирпич, бетона на легких искусственных и естественных заполнителях, ячеистые бетоны и другие. Наиболее универсальным строительным материалом является кирпич Однако, он имеет ряд существенных недостатком, таких как большая энергоемкость и длительность технологического цикла производства, относительно большая объемная масса до 1900 кг/м3, высокая теплопроводность. Конструкции из кирпича слабо поддаются механизации производства строительных работ и характеризуются значительной трудоемкостью. Бетоны на легких искусственных и естественных заполнителях имеют лучшие физико-механические свойства: меньшую объемную массу материала 900 1200 кг/м3, меньшую теплопроводность и соответственно меньшую толщину стен и массу конструкций всего здания Позволяют изготавливать конструкции крупными элементами (панели) и механизировать строительный процесс. Однако, энергозатраты на производство искусственных легких заполнителей бетона достаточно велики, хотя и меньше чем на кирпич. Доставка же природных заполнителей к районам строительства как правило связана со значительными транспортными затратами и не всегда экономически оправдана. Кроме того, производство строительных конструкций из легких бетонок базируется на применении в качестве вяжущего в основном цемента -материала дорогого, дефицитного и экологически не совсем чистого.

Наиболее близким к изобретению является силикатный ячеистый бетон автоклавного твердения, полученный из смеси, содержащей известь-кипелку, кремнеземистый компонент, алюминиевую пудру и воду. Соотношение между кремнеземистым компонентом и известью находится в пределах 2,4 3,6 вода берется в количестве, обеспечивающем оптимальную текучесть. Количество алюминиевой пудры в смеси зависит от заданного объема ячеистобетонной смеси Сырьевая база производства автоклавных силикатных изделий для жилищно-гражданского и промышленного строительства значительно шире, чем для бетонных изделий. Знергозатраты на производство материала и возведение конструкций почти в 2 раза меньше, чем на производство материала и возведение стен из кирпича и керамзитобетонита, а удельный расход вяжущего (извести), на 1 м3газосиликата на 25 30% меньше, чем расход цемента на производство 1 м3 газобетона на цементе Огнестойкость газосиликата соответствует ГОСТу.

Однако, с уменьшением плотности газосиликата, то есть при улучшении его теплотехнических характеристик и уменьшении веса конструкций значительно уменьшается и марка материала по прочности на сжатие, что выводит его из категории конструкционного в теплоизоляционный материал, а это снижает эффективность применения его как стенового материала в строительстве. Кварцевый песок, как один из основных компонентов газосиликата, имеет промышленные запасы не во всех регионах и для некоторых регионов интенсивного строительства является дефицитным и дорогим сырьем из-за значительных транспортных расходов. Кроме того, кварцевый песок высокоабразивный материал. При его измельчении очень интенсивно изнашиваются рабочие органы помольного оборудования и требуется частое их восстановление.

Цель изобретения улучшение физико-механических свойств материала.

Поставленная цель согласно изобретению достигается тем, что при производстве газосиликата кварцевый песок заменяется новым кремнеземистым компонентом аргиллитом. Аргиллит это горная порода, имеющая следующий минералогический состав, SiO2 51 61,86 Al2O3 13,45 15,66 Fe2O3 2 6 CaO 1,42 10,54 SO3 0,1 2 K2O 2,2 2,5 Na2O 0,6 0,8
MgO 0,1 2,8
Прочие 7,98 13,50.

Порода находится в тонкодисперсном спрессованном состоянии.

Объемная масса аргиллита 1,8 1,9 г/м3 (справочно кварцевый песок 2,65 2,7 г/см3). При изготовлении ячеистого бетона на аргиллите компоненты вводятся в следующем соотношении (по массе сухой смеси),
Известь кипелка 10 25
Аргиллит 75 90
Алюминиевая пудра 0,02 0,1.

Новым в изобретении является замена кварцевого песка, состоящего из диоксида кремния SiO2 на аргиллит, содержащий оксиды кремния, алюминия, железа SiO2, Al2O3, Fe2O3. В процессе диспергирования компонентов материала в жидкой среде происходит механическое активирование индивидуальных реагентов и их смесей. При химическом взаимодействии извести-кипелки (CaO + MgO) с оксидами SiO2, Al2O3, Fe2O3, содержащимися в аргиллите, образуются силикаты, алюминаты и ферриты кальция. При гидротермальной обработке материала и автоклаве под давлением насыщенного пара 0,8 1,2 МПа происходит гидратация минералов с образованием различных по составу и структуре кристаллов гидросиликатов, гидроалюминатов и гидроалюмоферритов кальция, их твердых растворов, комплексных соединений. Свободные CaO и MgO гидратируются с образованием Ca(OH)2 и Mg(OH)2. Таким образом, при замене кварцевого песка на аргиллит по технологии производства газосиликата синтезируется новое цементирующее вещество с новыми физико-механическими свойствами.

Существенным отличием нового материала является то, что при гидротермальной обработке смеси образуются гидросиликаты, гидроалюминаты и гидроалюмоферриты кальция, что приближает материал по составу к цементу.

При конкретном изготовлении силикатного ячеистого бетона на аргиллите с введением извести меньше 10% и аргиллита больше 90% получается материал с уменьшенной плотностью и низкой прочностью, пригодный для применения только в качестве теплоизоляционной засыпки.

При введении извести больше 25% и аргиллита меньше 75% получается материал с увеличенной плотностью и увеличенным расходом вяжущего, что снижает экономическую эффективность его производства.

При конкретном изготовлении силикатного ячеистого бетона на аргиллите в предлагаемом составе компонентов,
Известь 10 25
Аргиллит 75 90
Алюминиевая пудра 0,02 0,1
получается материал соответствующий требованиям ГОСТ 25485-82 на автоклавные ячеистые бетоны. Новый материал имеет более высокие технические свойства по сравнению с газосиликатом и получен с минимальными затратами материальных, в первую очередь топливно-энергетических ресурсов. Снижение затрат на эксплуатационное поддержание помольного оборудования и замена произвольного кремнеземистого компонента песка на местное сырье аргиллита, значительно снижает себестоимость нового материала и повышает экономическую эффективность его применения в строительстве.

В качестве примера изготовления изобретения в лабораторных условиях выполнены образцы силикатного ячеистого бетона на кварцевом песке (газосиликат) и на аргиллите при одинаковом содержании вяжущего извести. Образцы изготовлены по стандартной технологии производства силикатного ячеистого бетона автоклавного твердения: совместный помол и смешивание компонентов в жидкой среде, добавление порообразователя, автоклавная обработка при давлении пара 0,8 МПа, в течение 12 ч. Сырье для образцов взято из следующих источников: кварцевый песок завозится в город из песчаных карьеров на Украине; известь кипелка из Каменского карьера Адлеровского района города Сочи, аргиллит из Ново-пластунского карьера города Сочи. Состав аргиллита Ново-Пластунского месторождения следующий, SiO2 61; Al2O3 12,6; Fe2O3 5; CaO 6,1; MgO 2; K2O 2,4; NaO 0,5; SO3 0,5, п.п.п. 9,1.

Проба N 1 образцы на кварцевом песке состава, известь кипелка 10; песок кварцевый 90, алюминиевая пудра 0,1.

Проба N 2 образцы на аргиллите состава,
Известь кипелка 10
Аргиллита 90
Алюминиевая пудра 0,1.

Образцы на прочность испытаны в лаборатории.

Сравнение результатов испытания образцов не прочность показало, что при одинаковой марке по плотности марка образцов из аргиллита по прочности на сжатие в среднем на 70% выше, чем образцов на кварцевом песке.

Использование предлагаемого материала позволит уменьшить вес ограждающих конструкций зданий и сооружений, уменьшить транспортные расходы на перевозку строительного материала к месту строительства. Кроме того, замена привозного сырья, кварцевого песка на местное сырье аргиллит значительно уменьшит себестоимость материала. Уменьшение эксплуатационных расходов на поддержание помольного оборудования из-за меньшей абразивности аргиллита по сравнению с песком, также снизит себестоимость материала.

Формула изобретения

Силикатный ячеистый бетон автоклавного твердения, полученный из смеси, содержащей известь-кипелку, кремнеземистый компонент, алюминиевую пудру и воду, отличающийся тем, что в качестве кремнеземистого компонента используют аргиллит при следующем соотношении компонентов в смеси, мас.

Известь-кипелка 10 25
Аргиллит 75 90
Алюминиевая пудра (сверх 100% извести и аргиллита) 0,02 0,1
Вода До оптимальной текучести смеси.

Газосиликатные блоки ― основные свойства и характеристики.

Газосиликатные блоки – это разновидность стенового материала из ячеистого бетона.

В подготовленную бетонную смесь добавляют специальные порообразующие добавки. В 19 веке, для получения такого эффекта примешивали бычью кровь.

В начале 30-х годов, советский строитель Брюшков обратил внимание на растение, произрастающее в Средней Азии – мыльный корень.

Цементный раствор при смешивании с пеной этого растения, получил способность пениться и увеличиваться в объёме, а при застывании – сохранял полученную пористую структуру.

Затем, стали добавлять и различные химические газообразующие добавки. Мы, к сожалению, не запатентовали данный способ производства искусственного камня. Это сделал шведский архитектор Эрикссон в 1924 году.

Состав газосиликатных блоков

Блоки из газосиликатных смесей – это стеновой материал, который позволяет создавать здоровый микроклимат в помещении, так как обладает хорошими диффузными характеристиками. То есть здание «дышит», что исключает появление плесени. Какие исходные компоненты берутся для изготовления блоков?

Газобетонная смесь, согласно СН 277-80 «Инструкция по изготовлению изделий из ячеистого бетона» состоит:

  • Портландцемент, изготовленный по ГОСТ 10178-76, с содержанием силиката кальция не менее 50%., трёхкальциевого алюмината не более 6%. Не допускается добавка трепела.
  • Песок должен отвечать требованиям ГОСТ 8736-77, глинистых и илистых включений не более 2%, содержание кварца не менее 85%.
  • Вода с техническими требованиями по ГОСТ 23732-79.
  • Известь-кипелка кальциевая должна соответствовать ГОСТ 9179—77, и быть не ниже 3-го сорта. Дополнительные характеристики: скорость гашения 5-15мин., «пережог» – не более 2%, содержание СаО+МgО – не менее 70%.
  • Используется газообразователь – алюминиевая пудра ПАП- 1 или ПАП-2
  • Поверхностно-активное вещество (ПАВ) – сульфонол С.

Виды и характеристики

По способу изготовления газосиликат делится на:

  • Неавтоклавный – рабочая смесь застывает в естественных условиях. Этим способом можно получить более дешёвый материал, но у таких блоков будут худшие характеристики по прочности, а усадка при высыхании в пять раз выше, чем у автоклавного изделия.
  • Автоклавный – блоки с повышенными показателями по прочности и усадке при высыхании. Автоклавное производство энергоёмкое и технологичное. Пропарка изготавливаемого газосиликата идёт при давлении 0,8-1,2МПа, и температуре 175-200ºС, что могут позволить себе крупные предприятия. Об этом надо помнить, приобретая блоки из газосиликата.

Рассчитывая процентное соотношение ингредиентов в составе газобетонной смеси, можно получить различные характеристики газосиликата. Например, добавляя портландцемент, мы увеличивает прочность и морозостойкость (уменьшением количества «опасных пор), но ухудшаем теплопроводность изделия.

Главные физико-механические свойства блоков:

1. По плотности, блоки из газосиликата делятся на следующие виды:

  • Конструкционные: марки D700 и выше. Применяют для возведения зданий повышенной этажности – до трёх этажей.
  • Конструкционно-теплоизоляционные: марки D500, D600, D700. Можно использовать для устройства перегородок и несущих стен малоэтажных строений. Правда, надо отметить, что изделия марки D500 у некоторых изготовителей относятся к теплоизоляционным видам.
  • Теплоизоляционные: не выше марки D400. Этот вид газоблока предназначен для теплоизоляционного контура несущих стен, возведённых из более прочных материалов.

Следует упомянуть, что профессионалы-практики советуют: использовать конструкцию стен с несущим каркасом, если предполагается, что у будущего дома будет больше двух этажей. Наверно, стоит прислушаться к этому совету.

2. Показатель теплопроводности зависит от предназначения блока:

  • Конструкционные марки имеют теплопроводность от 0,18 до 0,20 Вт/м·°С, что ниже таких показателей у глиняного кирпича.
  • Конструкционно-теплоизоляционные – от 0,12 до 0,18 Вт/м·°С.
  • Теплоизоляционные – от 0,08 до 0,10 Вт/м·°С. Если сравнить с теплопроводностью дерева (0,11 до 0,19 Вт/м·°С), то первенство будет за газоблоком.

Надо помнить, что этот показатель относится к полностью сухому материалу. При намокании эта характеристика ухудшается.

3. Морозостойкость блоков из газосиликата зависит от характеристики структуры ячеистости, которая делится на три класса:

  • Резервные – объём пор с диаметром более 200 мкм
  • Безопасные – объём пор с диаметром менее 0,1 мкм
  • Опасные – от 200 до 0,1 мкм

Если отношение резервного объёма к опасному объёму будет более 0,09, то газобетонный блок будет обладать высокой морозостойкостью. Морозостойкость газоблоков достаточно высока. Она равна: 15, 25, 35 циклов. Некоторые производители заявляют 50, 75 и даже 100 циклов. Как, например, Обуховский завод, который производит блоки Аерок.

Но надо учитывать, что ГОСТ 25485-89 нормировал марки по морозостойкости начиная с D500, и этот показатель был не выше F35.

Поэтому, желательно с осторожностью относиться к заявленной заводами-изготовителями морозостойкости своих изделий. Можно поинтересоваться значением вышесказанного отношения.

Типоразмеры и вес

По назначению блоки из газосиликата различают:

  • Стеновой блок. Стандартный размер газосиликатного блока:600×200×300 мм (длина; глубина; высота)
  • Стеновой полублок. Его размер: 600×100×300 мм.
  • Размеры газосиликата, в зависимости от производителя, могут значительно варьироваться: 500×200×300 мм; 588×150×288 мм; 588×300×288 мм; 250×400×600 мм; 250×250×600 мм и т.д.

Сколько весит газосиликатный блок? Его вес, естественно, зависит от плотности и объёмных характеристик газосиликата:

  • Вес конструкционного стенового блока равняется 20 кг – 40 кг. Полублока – от 10 кг до 16 кг.
  • Вес конструкционно-теплоизоляционного блока – от 17 кг до 30 кг. Полублока – от 9 кг до 13 кг.
  • Вес теплоизоляционного блока равняется от 14 кг до 21 кг. Полублока – от 5 кг до 10 кг.

Достоинства и недостатки

Достоинства блоков из газосиликата:

  • Низкая плотность (небольшой вес), оказывает малое давление на фундамент домостроения. Позволяет сократить время строительства, снизить расходы на оплату труда и транспортировку.
  • Малая теплопроводность. Она в три раза ниже, чем у глиняного кирпича.
  • Высокая звукоизоляция. Она в 10 раз выше, чем у кирпичной кладки.
  • Практически идеальная геометрия изделий, что позволяет вести кладку на специальных клеях.
  • Сравнительно низкая стоимость.
  • Отличные огнеупорные свойства.
  • Создают здоровый микроклимат в помещении.

Недостатки газосиликатных блоков:

1. Возведение дома из этого стенового материала требует рабочих с высокой квалификацией, имеющих опыт работы с газосиликатом:

  • Если мы не хотим получить стену в трещинах, необходимо качественное выполнение фундамента. Важно, что бы у основания (или цоколя), отклонения по горизонтали были не более 3 мм на длину в 2 м.
  • Кладка на клеях должна вестись с особой тщательностью: разрыв в клеевом шве недопустим, иначе мы получим естественную вентиляцию через стены, и, вопреки ожиданиям, дом будет холодным. Не следует делать швы толщиной менее 3-5 мм.
  • Дорогая внутренняя отделка. Штукатурка в обязательном порядке по сетке (стеклохолст), что бы не проявлялись трещины. Штукатурный слой должен быть не более 4-5 мм.

2. Необходимость отделки фасада не только из-за неприглядности кладки, но и из-за того, что газосиликат хорошо впитывает влагу. В связи с такой особенностью, не рекомендуют применять его в районах, где влажность составляет больше 60%.

3. Стена из газобетона плохо удерживает тяжёлые навесные предметы.

Сколько стоит газосиликатный блок

В зависимости от завода-изготовителя и марки, цена за 1 м3 составляет:

  • Стоимость 1 м3 стенового, конструкционно-теплоизоляционного блока колеблется от 250 грн. до 290 грн.
  • Стоимость 1 м3 теплоизоляционного блока – от 2600 руб. до 290 грн.
  • Конструкционного – около 300.

Цена за 1 штуку газосиликатного блока станда грнртного размера, конструкционно-теплоизоляционного назначения колеблется где-то от 90 до 100 грн

Статьи pp-budpostach.com.ua Все о бане

Статьи по пеноблоку,пенобетону,пенобетонным блокам

Статьи pp-budpostach.com.ua Статьи по бетону

Статьи Все о заборах

Статьи pp-budpostach.com.ua Все о крышах ( виды, материал, как лутше выбрать)

Статьи Все о Фундаменте

Статьи по газобетону ( газоблоку ), газобетонных блоков, газосиликатнных блоков

Новости, статьи, слухи, факты, разное и по чу-чуть

Статьи по кирпичу ( рядовому, лицевому,облицовочному,клинкерному, шамотному, силикатному,)

Большинство современных строений возводится из газосиликатных блоков. Эксплуатационные характеристики данного строительного материала высокие. Надежность кладки каждой постройки зависит от используемого клеевого состава. Какой клей для блоков лучше? Какими свойствами он должен обладать?

  • Скрепляющий раствор должен быть устойчивым к низким температурам и влаге.
  • Иметь высокую степень пластичности.
  • Клей должен обладать повышенным уровнем адгезии.
  • Смесь для кладки блоков газосиликатных должна иметь оптимальное время застывания.

Ассортимент клеевых смесей на современном рынке разнообразный, а любой вид клея удобно использовать и просто готовить. Любая ровная поверхность может быть пригодной к его нанесению, об этом позаботились производители. Состав клея для газосиликатных блоков включает песок мелкозернистого вида, вяжущую основу преимущественно из силиката кальция (портландцемент), полимерные добавки и модификаторы. Полимерные компоненты обеспечивают пластичность массы и улучшают ее клеевые свойства. Благодаря модификаторам внутри кладки удерживается влага, что предотвращает растрескивание швов.

Как выбрать хороший клей для газобетона

Чтобы выбрать скрепляющую смесь для кладки пористых блоков, следует обратить особое внимание на несколько критериев.

  • Известность производителя. Качество поставляемой на рынок продукции всегда под строгим контролем. Своей репутацией дорожит каждый.
  • Упаковка и хранение. Обязательное условие — ее целостность. Помещение для хранения концентрата клея должно быть сухим и хорошо проветриваться. Если предлагают клеевую смесь на развес, это означает, что качество товара не самое высокое и лучше отказаться от покупки.
  • Расход клея для газосиликатных блоков. Необходимые расчеты следует провести перед покупкой. Ориентация делается на толщину связывающего слоя. Если слой не превышает 3 мм толщины на метр квадратный, закупается 8-9 кг рабочего состава.

Некоторые производители предлагают потребителю строительный материал и клей для кладки газосиликатных блоков. Предложение стоящее, так что можно рассмотреть.

Смесь для кладки пористого бетона: виды и специфика использования

Современный строительный рынок предлагает ассортимент смесей для сезонного использования и пенный состав в баллонах. Летний клей для газосиликата изготовлен на основе белого портландцемента. Используется в теплое время года. Смесь пользуется спросом при проведении внутренних работ, что снимает финансовые затраты на отделку помещения.

Смесь серого цвета можно использовать для кладки пористого бетона в любое время года. Эксперты строительной сферы считают его зимним вариантом. В составе данного вида клея находятся противоморозные добавки. Они предусматривают использование смеси при температуре до -10 градусов. Если температура опускается ниже отметки минус 15 градусов, теплопроводность самого газобетона может ухудшаться. Кладку следует укрыть брезентом. При работе с зимним вариантом клеевого состава специалисты советуют соблюдать некоторые рекомендации.

  • Мешки с концентратом должны быть складированы только в отапливаемом помещении.
  • Раствор необходимо готовить в теплом помещении, используя для разбавления смеси воду определенной температуры (не ниже +20°C).
  • Температура рабочего раствора не должна опускаться ниже отметки +10°C.
  • Раствор необходимо расходовать в течение 30 минут.

Инновационным раствором современного строительного рынка считается клей в формате пены в баллонах. Его наносят на поверхность с помощью специального устройства (напоминает пистолет).

Популярные марки клея для газосиликата

Выбрать клей для газосиликатных блоков помогут отзывы покупателей-любителей и профессиональных строителей, которые пользовались той или иной маркой клея. Рассмотрим марки, пользующиеся особой популярностью среди отечественных покупателей.

Смесь «Забудова». Хороший клей для блоков, который удобно наносить на поверхность. В состав входит морозоустойчивая добавка, благодаря которой можно производить кладку при минусовой температуре (до -15°C). Расход раствора экономичный, швы устойчивы к атмосферным осадкам.

Клей Ilmax 2000 предназначается для укладки газосиликатных блоков и устранения дефектов в них. Раствор наносят на горизонтальную и вертикальную поверхность соседних блоков с помощью кельмы, затем распределяется зубчатым шпателем. После укладки в течение 5-10 минут мастер производит коррекцию положения.

Клеевой состав «Тайфун Мастер» подходит для укладки перегородок и стен из пенобетонных, керамзитобетонных и газосиликатных блоков. Состав следует наносить на чистую подготовленную поверхность соседних блоков, после чего распределять теркой или зубчатым шпателем. Корректировать расположение блоков можно в течение 10-20 минут.

Еще про строительство и ремонт

Экологичность газосиликатных блоков

Экологичность стен из газобетона объясняется их высокой паропроницаемостью. Данное свойство дает возможность стенам «дышать», обеспечивая свободный проход газов и пара через стену без дополнительного ее увлажнения. Оптимальная относительная влажность воздуха позволяет создать в помещении комфортные условия проживания.
За счет высоких показателей структурной пористости блоки из ячеистого бетона обладают хорошими звукоизоляционными свойствами. Владельцев домов, возведенных из газобетона, не потревожат шумные соседи и звуки мегаполиса.
Пористая структура газобетонных блоков также обеспечивает прекрасные теплоизоляционные характеристики этого материала с коэффициентом проникновения тепла от 0,09 до 0,14 Вт/м*С.

Газосиликат или пеноблок

Оба этих строительных материала имеют одинаковое происхождение: раствор бетона и пористая структура. Отличия имеются в технологии появления пузырьков. В процессе производства пенобетона пузырьки образуются путем взаимодействия алюминиевой пыли и извести, которые выделяют водород.

А пористая структура газосиликатов достигается путем добавления специального пенообразователя. Оба материала затвердевают быстрее, чем воздух покинет их структуру. Если в первом варианте пузырьки пытаются покинуть смесь и поднимаются вверх, то в другом случае – их держит пенообразователь.

Когда его действие прекращается, пузырьки лопаются и уплотняют структуру. Поэтому оба материала отличаются по гигроскопичности. В пенобетон проще попасть влаге, чем в газосиликат.

Пеноблок, в отличие от газосиликата, обладает идеально гладкой поверхностью. В нее труднее проникнуть влаге. Если сравнивать блоки с одинаковой прочностью, то газосиликатный будет иметь меньший вес. Это объясняется его большей пористостью.

Таблица 1

Газоблок и газосиликат

Газоблок представляет собой искусственный камень, имеющий ячейки диаметром от 1 до 3 мм. Они равномерно располагаются по всей структуре материала. Именно степень равномерности этих пузырьков влияет на качество конечного материала. При производстве газоблока в основе лежит цемент с автоклавным или естественным затвердеванием.

Газосиликат – это материал, в основе которого лежит известь. Кроме нее в состав входит: песок, вода и газообразующие добавки. Блоки проходят автоклавную обработку. Смесь для газосиликата заливается в форму и проходит печную термическую обработку, после чего готовый блок разрезается струной на более мелкие блоки необходимых размеров.

Газоблоки имеют более низкий коэффициент шумоизоляции. Если газосиликат впитывает влагу и от этого страдает его структура, то газоблок пропускает ее через себя, создавая комфортный микроклимат в помещении.

Газосиликатные блоки благодаря равномерной пористости являются более прочными. И имеют большую стоимость, чем менее прочные газоблоки.

Таблица 2

About the author

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *