Вольты и ватты

Разница между Вольтом и Ваттом

Одними из основных характеристик любого электрооборудования является напряжение и потребляемая мощность, в связи, с чем на любом приборе (или в паспорте к нему) имеется информация о мощности (Ватт) и напряжении (Вольт).

Определение

Ватт (Вт или W) — это единица измерения мощности.

Вольт (В или V) — это единица измерения электрического потенциала, напряжения, разности потенциалов и электродвижущей силы.

Сравнение

Вольт и Ватт — это единицы измерения для разных электротехнических параметров.

1 Вольт — это величина электрического напряжения на концах проводника, необходимая для выделения теплоты мощностью равной 1 Ватт при силе постоянного электрического тока, протекающего через данный проводник, равной одному Амперу. Также 1 Вольт можно охарактеризовать как разность электрических потенциалов между двумя имеющимися точками в случае, когда для перемещения электрического заряда величиной в 1 Кулон из точки в точку требуется произвести работу, равную 1 Джоулю.

Реклама

1 Ватт — величина мощности, при которой за одну секунду совершается работа равная одному Джоулю. Следовательно, Ватт — это производная от других величин единица. Так, например, мощность соотносится с напряжением следующим образом: Вт = В•А, где В – показатель величины напряжения, а А – показатель величины силы тока. Кроме механической мощности различают ещё электрическую и тепловую мощность.

Выводы TheDifference.ru

  1. Ватт (Вт или W) — стандартная единица измерения мощности.
  2. Вольт (В или V) — стандартная единица измерения напряжения, разности электрических потенциалов, электрического потенциала и электродвижущей силы.
  3. Мощность (Вт) любого прибора можно рассчитать, перемножив напряжение (В) на силу тока (А). АМПЕР (А) — стандартная единица измерения силы электрического тока.

Как перевести киловатты в амперы и наоборот

Наличие развитой электрической сети является таким же признаком современного объекта недвижимости как водопровод, канализация и система вентиляции.

Аналогично любой сложной технической системе, электрическая проводка как комплекс характеризуется определенными численными параметрами, среди которых чаще всего упоминаются амперы и киловатты.

Связано это с тем, что внутридомовая электрическая сеть имеет фиксированное напряжение (220 и 380 В), которое полностью определяется схемой, использованной при ее построении, тогда как амперы и киловатты меняются в широких пределах.

Даже при начальных знаниях в области электротехники, а также при первичном знакомстве с принципами построения и функционирования электрической проводки становится ясным, что указанные параметры взаимозависимы.

Поэтому сразу же возникает естественное стремление свести их к одной интегральной величине или, при нецелесообразности такого перехода, установить между ними простую взаимосвязь.

В чем состоит отличие ампер и киловатт

Фундаментальное отличие между единицами измерения параметров электрической сети, которые вынесены в заголовок этого раздела, состоит в том, что они представляют собой численную меру различных физических величин.

В данном случае:

  • амперы (сокращение А) показывают силу тока;
  • ватты и киловатты (сокращение Вт и кВт, соответственно) характеризуют активную (фактически полезную) мощность.

На практике используется также расширенное описание мощности с измерением ее в вольт-амперах и, соответственно киловольт-амперы, которые кратко обозначаются как ВА и кВА.

Они, в отличие от Вт и кВт, которыми описывается активная мощность, указывают на полную мощность.

В цепях постоянного тока полная и активная мощности совпадают. Аналогично, в сети переменного тока при небольшой мощности нагрузки на инженерном уровне строгости можно не учитывать различие между Вт (кВт) и ВА (кВА), т.е. работать только с двумя первыми единицами.

Для таких цепей действует следующее простое соотношение:

W = U*I, (1)

где W – (активная) мощность, задаваемая в Вт, U –напряжение, указываемое в вольтах, I – сила тока, измеряемая в амперах.

При увеличении мощности нагрузки до уровня тысяча ватт и выше для постоянного тока соотношение (1) не меняется, а для переменного тока его целесообразно записать как:

W = U*I*cosφ, (2)

где cosφ – так называемый коэффициент мощности ли просто “косинус фи”, показывающий эффективность преобразования электрического тока в активную мощность.

По физическому смыслу φ представляет собой угол между векторами переменного тока и напряжения или угол фазового сдвига между напряжением и током.

Хорошим критерием необходимость учета данной особенности являются те случаи, когда в паспортных данных и/или на корпусных табличках-шильдиках электроприборов, преимущественно мощных, потреблением более 1 кВт, вместо кВт указывают ВА или кВА.

Обычно для бытовых электрических устройств с мощными электродвигателями (стиральные и посудомоечные машины, насосы и аналогичные им) можно положить cosφ = 0,85.

Это означает, что 85% потребляемой энергии является полезной, а 15% образует так называемую реактивную мощность, которая непрерывно переходит из сети в нагрузку и обратно до тех пор, пока в процессе этих переходов она не рассеется в виде тепла.

При этом сама сеть должна быть рассчитана именно на полную мощность, а не на полезную. Для указания этого факта ее указывают не в ваттах, а в вольт-амперах.

Как единица измерения ватт (воль-ампер) иногда оказывается слишком маленьким, что приводит к сложным для визуального восприятия числам с большим количеством знаков. С учетом этой особенности в ряде случаев мощность указывают в киловаттах и киловольт-амперах.

Для этих единиц справедливо:

1000 Вт = 1 кВт и 1000 ВА = 1кВА. (3).

Почему возникает необходимость перехода от ампер к киловаттам и обратно

Свести описание электрической сети только к одной единице не получается. Необходимость использования двух разных единиц измерения параметров возникает из-за того, что в подавляющем большинстве случаев конкретная проводка обслуживает несколько потребителей, каждый из которых вносит свой вклад в силу протекающего тока.

В результате

  • сечение проводов удобно рассчитывать по максимальной силе протекающего через них тока;
  • аналогичным образом подбираются автоматические выключатели, которые защищают приемники и провода от перегрузки и короткого замыкания;
  • основной же характеристикой любого подключаемого к розетке электрического устройства как токоприемника или нагрузки традиционно является его мощность.

Популярность указания мощности потребления, как одного из главных параметров электроприбора, определяется также тем, что оплата электроэнергии осуществляется по электросчетчику, который отградуирован в кВт*час.

Соответственно при известной стоимости одного кВт*час оплата электроэнергии определяется простым перемножение трех чисел: мощности, продолжительности работы и стоимости одного кВт*час.

С учетом особенности определения расходов на электроэнергию становится понятным преимущество применения для мощных устройств не полезной мощности, измеряемой в кВт, а полной мощности, которая определяется в кВА.

Оно выгодно тем, что дает возможность выполнять расчеты по единой методике без отдельного учета фактического фазового сдвига тока и напряжения.

Принцип идентичности расчетов при знании полной мощности распространяется также на расчет тока.

Сам пересчет из одной единицы в другую выполняется по представленным выше соотношениям (1) и (2) и из-за их простоты не составляет больших проблем.

В данном случае свою роль играет то, что напряжение U можно считать константой, которая меняется только от количества фаз проводки.

Далее приведем основные правила выполнения таких расчетов применительно к наиболее часто встречающихся на практике случаям.

Определение мощности по силе тока для однофазной сети

Необходимость выполнения этой процедуры чаще всего возникает при задании ограничений по максимальной мощности электроприбора, который можно подключить к конкретной розетке или их группе.

При нарушении данного ограничения возрастают риски пожара, а пластмассовые декоративные элементы розетки могут расплавиться из-за избытка выделяющегося тепла.

На основании определений, которые в математической форме описываются выражениями (1) и (2), для нахождения мощности следует просто умножить ток на напряжение.

Максимально допустимый ток выносится на маркировку розетки и для большинства комнатных бытовых изделий этой разновидности обычно составляет 6 А.

Напряжение, подаваемое от электросети на розетку, равно 220 – 230 В. Таким образом, максимальная мощность составляет 1,3 кВт.

Отдельно укажем на то, что риски повреждения розетки при подключении чрезмерно мощного устройства минимальны в правильно спроектированной бытовой проводке.

Это полезное свойство обеспечено:

  • установкой автоматов;
  • применением в мощных электроприборах вилок, которые физически не могут подключаться к обычным розеткам (механическая блокировка).

Своеобразным вариантом механической блокировки можно считать довольно популярное прямое соединение мощного стационарного устройства (кондиционер, бойлер) с сетью без использования розеток.

Пересчет мощности в ток для однофазной сети

Расчет тока выполняется обычно в процессе подбора автомата, обслуживающего мощный потребитель типа прямоточного водонагревателя.

На основании выражений (1) и (2) задача решается в одно действие. Для этого достаточно разделить мощность на напряжение.

Величина мощности приводится в техническом описании устройства или же указывается прямо на его корпусе. Напряжение принимается равным 220 В, что создает некоторый запас расчета.

Например, при мощности 3000 Вт в соответствии с приведенным правилом получаем ток в 3000/220 = 13,7 А, что указывает на необходимость применения 16-амперного защитного автомата.

При указании мощности в киловаттах в расчет добавляется одно действие: необходимо предварительно перевести киловатты в ватты с учетом формулы (3).

Например, нагреватель имеет мощность 2,8 кВт. Тогда расчет тока выполняется следующим образом:

  • W = 2,8*1000 = 2800 Вт;
  • I = W/220 = 12,7 А.

Главной особенностью в данном случае становится то, что с учетом типового для бытовых устройств cosφ = 0,85 полезную работу будет выполнять 11,6 А (т.е. 85% всего тока), тогда как оставшиеся 2,1 А являются реактивным током, который бесполезно расходуется на разогрев проводов.

Быстрая оценка токов и мощностей

Предельная простота исходных соотношений (1) и (2) позволяет заметно упростить выполнение текущих расчетов при дополнительном условии задания мощности в киловаттах.

В основу упрощения расчетов положен факт того, что с учетом примерного постоянства напряжения в бытовой однофазной 220-вольтовой сети пересчет мощности в ток можно выполнить умножением мощности на постоянный коэффициент.

Для определения такого коэффициента целесообразно воспользоваться тем, что при задании W в кВт имеем довольно точную оценку I = W*1000/220 = 4,5*W.

Например, при W = 2,8 кВт получаем 4,5*2,8= 12,6 А, т.е. выкладки выполняются быстрее и существенно удобнее по сравнению с “правильным” расчетом при незначительной потерей точности.

Аналогичным образом столь же легко показать, что W = 0,22*I кВт. Необходимо помнить о том, что ток I указывается в амперах.

Таким образом, получаем простые правила:

  • один кВт соответствует 4,5 А тока;
  • один ампер соответствует мощности 0,22 кВт.

Последнее правило часто закругляют до уровня один ампер эквивалентен 0,2 кВт.

Связь мощности и тока в трехфазной сети

Принцип расчета мощности и тока для трехфазных сетей остается прежним. Главное отличие заключается в незначительной модернизации расчетных формул, что позволяет полноценно учесть особенности построения этого вида проводки.

В качестве базового соотношения традиционно берется выражение:

W =1,73* U*I, (4)

причем U в данном случае представляет собой линейное напряжение, т.е. составляет U = 380 В.

Из выражения (4) вытекает выгодность применения в обоснованных случаях трехфазных сетей: при такой схеме построения проводки токовая нагрузка на отдельные провода падает в корень из трех раз при одновременном трехкратном увеличении отдаваемой в нагрузку мощности.

Для доказательства последнего факта достаточно заметить, что 380/220 = 1,73, а с учетом первого числового коэффициента получаем 1,73 * 1,73 = 3.

Приведенные выше правила связи токов и мощности для трехфазной сети формулируются в следующей форме:

  • один кВт соответствует 1,5 А потребляемого тока;
  • один ампер соответствует мощности 0,66 кВт.

Укажем на то, что все сказанное справедливо в отношении случая соединения нагрузки так называемой звездой, что наиболее часто встречается на практике.

Возможно еще соединение треугольником, которое меняет правила расчета, но оно встречается достаточно редко и в этой ситуации целесообразно обратиться к специалисту.

Особенности выполнения расчетов автоматов

Одной из наиболее часто встречающихся задач при проектировании электрической проводки в жилых помещениях является определение тока срабатывания автоматических выключателей.

Эти элементы обязательны для применения и защищают отдельные сети и подключенные к ним электрические приборы от выхода из строя и возгорания в случае превышения нагрузки, а саму линию от короткого замыкания.

Расчет представляет собой 4-шаговую процедуру, которая выполняется следующим образом:

  • формируют перечень всех устройств, которые будут получать электроснабжение от данной сети;
  • в технических данных этих устройств находят мощность;
  • с учетом того, что отдельные устройства подключаются параллельно, вычисляют общий ток в амперах по формуле I = W /220;
  • по величине общего тока определяют номинал автомата.

Проиллюстрируем приведенную методику примером.

Пусть конкретно взятый провод обслуживает следующие потенциально одновременно включенные потребители:

  • настольную лампу мощностью 60 Вт;
  • торшер с двумя лампами по 60 Вт;
  • напольный кондиционер мощностью 1,7 кВт;
  • персональный компьютер с мощностью потребления 600 Вт.

Находим общую мощность потребления имеющейся техники. Предварительно переводим потребляемую мощность в общие единицы (в данном случае это ватты). Имеем 60 + 2*60 + 1,7*1000 + 600 = 2480 Вт.

Кондиционер является потребителем, мощность которого превышает 1 кВт. Для увеличения общей эксплуатационной надежности создаваемой проводки выполним оценку величины тока сверху, т.е. положим коэффициент мощности равным cosφ = 1.

Фактическое значение тока будет несколько меньше, разницу считаем запасом расчета.

Обычным мультиметром замеряем напряжение в сети, которое равно 230 В.

Тогда ожидаемый ток при одновременном функционировании всех приборов на основании формулы (1) составит:

I = 2280/230 = 10,8 А.

Таблица.

Как вывод можем констатировать, что данный участок электрической сети целесообразно защищать 16-амперным автоматом.

Также можно воспользоваться калькулятором перевода ватт в амперы.

Мощность электроустановок. Вольт-амперы (ВА) и Ватты (Вт). В чем отличие?

Многие не раз замечали, что мощность одних электроустановок указывается в ваттах, а мощность других электроустановок — в вольт-амперах. В данной статье мы объясним в чем разница между этими двумя единицами измерения.

На большинстве бытовых электроприборах мощность указывается в ваттах. Данная характеристика говорит нам о величине активной мощности электроприбора. Активная мощность — это мощность, которая непосредственно совершает полезную работу. Один ватт — это мощность, при которой за одну секунду совершается работа, равная одному джоулю. Именно эту мощность мы приобретаем у коммунального предприятия. Казалось бы, все просто. Электроустановка получает электроэнергию и перерабатывает ее в другие виды энергии — механическую, тепловую и т.д. Однако, на деле, большинство электроустановок помимо активной мощности потребляют или генерируют реактивную мощность. Реактивная мощность — это мощность, которая не совершает непосредственно полезной работы, но необходима для нормальной работы электроустановки. Например, в работе трансформатора, передача электроэнергии с первичной обмотки на вторичную осуществляется с помощью электромагнитного поля. Для создания этого электромагнитного поля и используется реактивная энергия. Если пренебречь различными незначительными потерями на магнитопроводах, то можно сказать, что реактивная мощность постоянно присутствует в сети и не требует дополнительного расхода ресурсов при генерации. Однако при этом она оказывает значительное влияние на пропускную способность электросети. При большой составляющей реактивной энергии, не смотря на полезную активную мощность, приходится дополнительно увеличивать сечения кабелей, мощность трансформаторов и т. д. Естественно это приводит к дополнительным финансовым затратам.

Из активной и реактивной мощности состоит полная мощность. Именно она и измеряется в вольт-амперах. Полную мощность переменного тока можно найти умножив действующее значение силы тока в приемнике и напряжение на зажимах электроприемника. Очень часто полную мощность называют кажущейся, так как подразумевается, что не вся она участвует в совершении полезной работы. Более подробно о том, что такое активная, реактивная и полная мощности вы можете прочитать в соответствующей статье на нашем сайте.

Переводим Вольт-Амперы (ВА) в Ватты (Вт)

Нередко наши покупатели, видя в названии стабилизатора цифры, принимают их за мощность в Ваттах. На самом деле, как правило, производитель указывает полную мощность прибора в Вольт-Амперах, которая далеко не всегда равна мощности в Ваттах. Из-за этого нюанса возможны регулярные перегрузки стабилизатора по мощности, что в свою очередь приведет к его преждевременному выходу из строя.

Электрическая мощность включает в себя несколько понятий, из которых мы рассмотрим наиболее для нас важные:

Полная мощность (ВА) — величина, равная произведению силы тока (Ампер) на напряжение в цепи (Вольт). Измеряется в Вольт-Амперах.

Активная мощность (Вт) — величина, равная произведению силы тока (Ампер) на напряжение в цепи (Вольт) и на коэффициент нагрузки (cos φ). Измеряется в Ваттах.

Коэффициент мощности (cos φ) — величина, характеризующая потребитель тока. Говоря простым языком, этот коэффициент показывает, скольно нужно полной мощности (Вольт-Ампер), чтобы «запихнуть» требуемую на совершение полезной работы мощность (Ватт) в потребитель тока. Этот коэффициент можно найти в технических характеристиках приборов-потребителей тока. На практике он может принимать значения от 0.6 (например, перфоратор) до 1 (нагревательные приборы). Cos φ может быть близок к единице в том случае, когда потребителями тока выступают тепловые (тэны и т.п.) и осветительные нагрузки. В остальных случаех его значение будет варьироваться. Для простоты это значение принято считать равным 0.8.

Активная мощность (Ватты) = Полная мощность (Вольт-Амперы) * Коэффициент мощности (Cos φ)

Т.е. при выборе стабилизатора напряжения на дом или на дачу в целом, его полную мощность в Вольт-Амперах (ВА) следует умножить на коэффициент мощности Cos φ = 0.8. В результате мы получаем приблизительную мощностьв Ваттах (Вт) на которую рассчитан данный стабилизатор. Не забывайте в расчетах принять во внимание пусковые токи электродвигателей. В момент пуска их потребляемая можность может превысить номинальную от трёх до семи раз.

Для любознательных:

Электрическая мощность

Коэффициент мощности

About the author

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *