Потенциал между нулем и землей

Защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Служит для превращения замыкания на корпус в замыкание на землю с целью уменьшения напряжения на корпусе относительно земли до безопасной величины.

Заземлить – означает металлически надежно, с помощью проводов, не имеющих изоляции, или шин, соединить с заземлителями подлежащие защите элементы или части оборудования. Заземлители бывают естественные и искусственные.

Естественные заземлители – металлические предметы, имеющие достаточную и постоянную поверхность соприкосновения с землей (трубопроводы, элементы конструкции зданий, баки для воды).

Искусственные заземлители – любые металлические предметы, имеющие достаточную и постоянную поверхность соприкосновения с землей, специально закладываемые в землю для целей заземления (трубы, уголки, профили, пруты).

Естественные и искусственные заземлители соединяют друг с другом металлической стальной шиной, сечение которой обуславливается значением токов замыкания на землю и механической прочностью заземлителей.

Заземляющим проводником называют провод, соединяющий защищаемое оборудование с находящимся в земле заземлителем.

Качество заземлителя определяется значением сопротивления заземления и изменением напряжения относительно земли. Под сопротивлением заземления заземлителя понимают сопротивление между заземлителем (у места соприкосновения с грунтом) и землей. Значение сопротивления заземления определяется как отношение полного напряжения относительно земли к полному току замыкания на землю. Под полным напряжением относительно земли понимается напряжение, возникающее в цепи тока замыкания на землю между заземлителем и землей (зона нулевого потенциала).

Физическая сущность защитного заземления показана на рисунке, где слева изображен любой трехфазный электроприемник (электродвигатель, трансформатор, прибор), справа – источник электроэнергии, нейтраль которого наглухо заземлена. На этом же рисунке представлена зависимость изменения напряжения U от L, где L – расстояние между заземлителем и зоной нулевого потенциала.

Принципиальная схема заземления для защиты от напряжения, возникшего на корпусе оборудования. 1 – электроприемник; 2, 3 – заземлители; 4 – источник элктроэнергии; zчел – полное сопротивление тела человека; Uп – полное напряжение относительно земли; Uпр – напряжение прикосновения; Uшаг – напряжение шага; r – активное сопротивление изоляции; с – емкость провода относительно земли.

Если изоляция электроприемника повредилась, то его токоведущая часть электрически соединилась с незаземленным металлическим корпусом технологического оборудования или защитного устройства. Коснувшись такого корпуса или же поддерживающей его конструкции, оставленной без заземления, человек оказывается под напряжением прикосновения, значение которого равно фазному или близко к нему. Таким образом, сущность защиты с помощью устройства заземлений заключается в создании такого заземления, которое обладало бы сопротивлением, достаточно малым для того, чтобы падение напряжения на нем (а именно оно и будет поражающим) не достигло значения, опасного для человека. В поврежденной цепи необходимо обеспечить такое значение тока, которое было бы достаточным для надежного срабатывания защитных устройств, установленных на источнике питания.

Нормирование сопротивления заземления. Для сетей напряжением ниже 1000 В на основании статистических данных “Правилами устройства электроустановок” определено лишь верхнее численное значение допустимого предела сопротивления заземления, а именно 40 м.

6. Зануление (заземляющая система с нулевым заземленным проводом).

Занулением называется защитное мероприятие, применяемое только в сетях с заземленной нейтралью напряжением ниже 1000 В, предназначенное для защиты людей от напряжения, возникающего на металлических частях оборудования, нормально не находящихся, но могущих оказаться под напряжением при тех или иных повреждениях изоляции, и заключающееся в создании в поврежденной цепи значения тока, достаточного для надежной работы защиты.

Занулить – это значит металлически (электрически) надежно соединить подлежащие защите части оборудования с нулевым проводом. Зануление требует применения заземлителей для присоединения к ним нулевого провода. Но значение этих заземлителей иное, чем при заземлении.

Принципиальная схема зануления для защиты людей от напряжения, возникающего на корпусе оборудования при повреждении изоляции. 1 – электроприемник; 2, 3 – заземлители; 4 – источник электроэнергии; 5 – распределение Uпр при отсутствии заземления; 6 – то же при его наличии; zчел – полное сопротивление тела человека; Rз,n – сопротивление повторного заземления; Rзм – сопротивление заземлителя нейтрали генератора; Uо – падение напряжения на нулевом проводе; Uпр – падение напряжения при отсутствии повторного заземления; Uпр – то же при его наличии.

Физическая сущность защиты в системе зануления поясняется на рисунке, на котором представлена принципиальная схема зануления с одним электроприемником. Показано соединение нейтралей источника электроэнергии с корпусом электроприемника; приведена диаграмма, характеризующая изменение напряжения относительно земли, возникающего при повреждении изоляции в двух случаях:

– нулевой провод имеет единственное заземление у источника электроэнергии;

– нулевой провод имеет повторное заземление у электроприемника.

В первом случае напряжение прикосновения увеличивается в сторону электроприемника и достигает максимального значения у его корпуса; численно это напряжение будет равно падению напряжения на нулевом проводе при коротком замыкании, возникающем в электроприемнике между фазным и нулевым проводом. Если сопротивление фазного провода rф будет равно сопротивлению нулевого провода r, то напряжение прикосновения в момент короткого замыкания на корпусе электроприемника при отсутствии повторного заземлителя будет равно половине фазного. Если же сопротивление нулевого провода будет больше сопротивления фазного, то напряжение прикосновения будет больше половины фазного. Уменьшить напряжение прикосновения можно двумя путями: увеличив сечение нулевого провода или устроив повторные заземлители.

Вывод: физическая сущность защиты посредством системы зануления заключается в снижении напряжения прикосновения путем уменьшения сопротивления нулевого провода и перераспределения напряжения прикосновения между основным (нейтраль трансформатора) и повторным (у электроприемника) заземлителями с помощью повторных заземлителей, численные значения сопротивлений которых роли не играют.

7. Защитное отключение.

Защитное отключение – это система защиты, основанная на автоматическом отключении электроприемника, если на металлических частях его, нормально не находящихся под напряжением, появляется напряжение, значение которого опасно для человека.

Такую систему, предназначенную для сети с изолированной нейтралью, принципиально можно использовать и для сети с заземленной нейтралью.

Принципиальная схема защитного отключения.

1 – корпус электроприемника; 2 – оттягивающая пружина; 3 – защелка, удерживающая ножи отключателя; 4 – отключающая катушка; 5, 6 – заземлители.

При защите человека от напряжения, возникающего на корпусе одиночного электроприемника вследствие повреждения его изоляции, возможны два случая: электроприемник не заземлен и электроприемник имеет заземление.

Первому случаю соответствует рисунок (I) – контакт с заземлителем разомкнут. На некотором расстоянии от защищаемого электроприемника забивают в землю заземлитель. Далее ставят сам отключатель или защитный выключатель. На рисунке все элементы этого выключателя для наглядности принципа действия разобщены. Защитный выключатель (отключатель) имеет катушку, разрывающую цепь при подаче на нее напряжения. Он может иметь и включающую катушку, позволяющую производить включение нажатием кнопки. Отключающая катушка удерживает выключатель в замкнутом включенном состоянии с помощью защелки. Один конец катушки подсоединен к корпусу электроприемника, второй – к выносному заземлителю. В случае повреждения изоляции, между корпусом электроприемника и выносным заземлителем появляется фазное напряжение. Отключающая катушка окажется под напряжением, и через нее пойдет ток. Ее сердечник втянется и освободит удерживающую защелку. Пружина оттянет ножи выключателя, и цепь разорвется. Напряжение прикосновения на корпусе электроприемника пропадет, соприкосновение с ним станет безопасным.

Если корпус электроприемника заземлен, то разъединитель заземлителя будет включен. При повреждении изоляции на корпусе электроприемника появится напряжение, но оно уже не будет равно фазному. Значение возникшего напряжения определит падение напряжения на заземлителе, равное току замыкания на землю, умноженному на сопротивление заземления заземлителя. В этом случае катушка выключателя должна быть рассчитана на действие от меньшего напряжения. Основой защиты с помощью защитного отключения является быстрое отключение поврежденного электроприемника. Чем меньше время действия отключающего устройства, тем надежнее система защиты. Одним из преимуществ защитного отключения является то, что оно может срабатывать и не при полном замыкании, а уже в начале развития повреждения. Это его существенное преимущество.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8526 — | 8113 — или читать все.

В электротехнике существует два понятия – заземление и зануление, при практическом применении которых большинство пользователей электроприборов впадают в заблуждение, ставя между ними знак равенства. На самом деле они принципиально отличаются друг от друга. Сегодня мы расскажем о том, в чем заключается эта разница.

Откуда появился ноль, и каким он бывает

Если рассматривать планету Земля с точки зрения электротехники, то она является сферическим конденсатором. В нем три элемента:

  1. Земная твердь, имеющая отрицательный потенциал.
  2. Ионосфера – слой атмосферы, воспринимающий и частично рассеивающий излучения Солнца. Она имеет положительный потенциал.
  3. Газовая атмосфера, имеющая диэлектрические свойства и играющая роль обкладки.

Разница потенциалов между обкладками этого глобального конденсатора равна 300 тыс. вольт. Она уменьшается по мере приближения к поверхности. Так, на высоте 100 метров ее значение 10 тыс. вольт.

Почему мы считаем потенциал Земли равным нулю, ведь на самом деле он имеет вполне материальное значение, хотя и c отрицательным знаком? Этот вопрос стоит задать ученым XVIII или XIX веков, заложивших основы электротехники.

Например, английскому физику Майклу Фарадею. Так им было удобнее измерять напряженность электромагнитного поля – принять за точку отсчета (ноль) Землю. Этот прием используется во многих отраслях науки. Например, в термодинамике. В ней за абсолютный ноль принята температура, при которой прекращается движение электронов в атомной структуре любого вещества.

Это так называемая шкала Кельвина, которая отличается от другой системы измерения температур – она предложена Андерсом Цельсием – на 273 градуса со знаком минус.

Итак, электрический ноль – это условное понятие, которое применяют в отношении любого предмета с отрицательным потенциалом. Его можно получить тремя способами:

  1. Присоединившись к земной тверди, отчего и произошло понятие «заземление».
  2. Кристаллическая решетка всех металлов имеет отрицательный заряд разной величины, что определяет степень их электрохимической активности. Поэтому достаточно присоединиться к металлическому предмету большой массы и объема. Два последних условия являются обязательными, поскольку тело должно иметь электрическую емкость, сравнимую с Земной. Это называется рабочим заземлением.
  3. Соединив проводники с текущим по ним переменным током так, чтобы в общей точке сумма их векторного сложения была равна нулю (так называемая схема звезда), из-за чего ее назвали нейтралью. Это основа приема, называемого в электротехнике занулением.

Заземление, зануление и нейтраль

Перечисленные выше способы получения электрического нуля используются в трех разных целях:

  1. Обеспечение безопасности людей.
  2. Защиты электроустановок.
  3. Обеспечение нормальной работы электроустановок.

Заземление

Это система, состоящая из заземлителя – любой металлической детали, имеющей непосредственный контакт большой площади с физической землей, а также соединительного проводника, передающего условно нулевой потенциал на детали электроустановки, которые не имеют непосредственного контакта с токоведущими частями. Последний в электротехнике называется «нулевой защитный проводник», на схемах он обозначается литерами РЕ.

Применяется исключительно для защиты людей от поражения электрическим током за счет свойства, который имеет электрический заряд. Он распространяется только по пути наименьшего сопротивления. У защитного проводника и заземлителя оно не превышает единиц Ом, а тело человека, даже по кратчайшему пути прохождения тока, имеет электрическое сопротивление 1 кОм.

Используется в линиях напряжением до 1 тыс. вольт, подключенных к силовым трансформаторам по схеме глухозаземленной нейтрали – выходные обмотки соединены звездой, а общая точка (N) дополнительно подключена к заземлителю.

Защитные проводники подключаются только к корпусам однофазных электроприборов.

Нейтраль и рабочее заземление

Нейтраль – это проводник, являющийся общим для трех обмоток (схема «звезда») на выходе силового трансформатора. Разность потенциалов между ним и фазным проводником равна 220 вольт. На схеме обозначается буквой N.

В однофазной сети переменного тока нейтраль используется для обеспечения работы электроустановок. Она делает цепь замкнутой, по ней течет ток. Второе ее предназначение – защита техники. При пробое изоляции или случайном касании проводников происходит короткое замыкание – мгновенное возрастание силы тока в десятки и сотни раз, что приводит к срабатыванию приборов защиты. Например, автоматических выключателей.

То, что по ней протекает ток, позволяет косвенно использовать её и для защиты людей. Для этого в схему питания электроустановки включается УЗО, работающее на принципе измерения разницы токов в фазном и нейтральном проводнике (дифференциальный трансформатор). Если человек прикасается к токоведущим частям, заряд уходит через него на землю, поскольку общее электрическое сопротивление тела меньше, чем электроустановки.

Баланс токов нарушается и УЗО отключает питание. То же самое происходит, если в результате пробоя изоляции фаза оказывается на корпусе прибора, к которому подключен защитный заземляющий проводник РЕ. В последнем случае вероятность электрической травмы существенно снижается или исключается полностью. Подробнее об устройстве и принципе работы УЗО читайте здесь, а о правильных способах подключения тут.

ВНИМАНИЕ! Категорически нельзя объединять проводники, обозначенные на схемах литерами PE и N, ведь у них разные задачи!

Ярким примером того, что между нейтралью и заземлением есть разность потенциалов, является схема подключения автомобильного генератора. По своей физической сущности он является трехфазной машиной переменного тока, статорные обмотки которого соединены звездой.

К выводу их общей точки подключается якорь реле, которое гасит лампочку «заряд» на панели приборов, после того, как генератор начинает вырабатывать ток. Происходит это потому, что между нейтралью и корпусом автомобиля возникает разность потенциалов, равная пяти вольтам.

Рабочее заземление на массу в сетях переменного тока напряжением свыше 127 вольт применяется только при выполнении специальных работ. Например, сварочных, когда требуется поджечь электрическую дугу. И является основным способом обеспечения функционирования установок постоянного тока, если соединение с физической землей невозможно.

На этом принципе построена электрическая схема автомобиля. Минусовая клемма аккумулятора замыкается на кузов, чем обеспечивается необходимая разность потенциалов.

Зануление

При подключении трехфазных электроустановок нередко возникает вопрос: «Зачем в кабеле четвертый, нулевой, провод, если напряжение 220 вольт не используется?» Эта жила может играть две роли:

  1. Защитного проводника PE при отсутствии общей точки подключения трансформаторов (схема «треугольник»).
  2. Технической нейтрали N, если выходные обмотки трансформатора соединены звездой.

В последнем случае нулевой провод подключается к металлическому корпусу электроустановки. Это и называется занулением. Оно предназначено лишь для защиты электротехники. Причем исключительно трехфазной и особенно той, которая из-за особенностей конструкции не имеет надежного соединения с физической землей.

Например, передвижных генераторов, ленточных пилорам с перемещаемым рабочим органом. Рабочий персонал зануление от электротравмы не спасает, поскольку между нейтралью и физической землей всегда существует разница потенциалов.

Заземление и нейтраль – это проводники, условно имеющие потенциал, равный нулю. При общем сходстве они выполняют разные задачи. Первый защищает человека от электротравмы. Второй обеспечивает работу электроустановки. Поэтому их нельзя объединять или подменять одно другим.

Обратимся к примеру электрической цепи, показанной на рис. 1.24.

Спросим себя, нарушится ли распределение токов в цепи, если мы заземлим какую-нибудь одну точку нашей цепи, например точку 1?

Чтобы дать правильный ответ на этот вопрос, надо помнить, что электрический ток возникнет лишь в замкнутой цепи. Заземление одной точки цепи, т. е. присоединение ее к проложенным в земле трубам или к забитым в землю железным стержням, не создает нового замкнутого пути для тока.

Рис. 1.24, Электрическая цепь, одна точка которой заземлена. Справа показан график, иллюстрирующий изменение потенциала цепи

При соединении с землей одной точки цепи ток в землю ответвляться не будет, если вся остальная часть цепи имеет достаточно хорошую изоляцию.

Другое дело, если заземляются одновременно две точки электрической цепи: в этом случае создается параллельная цепь и распределение токов может измениться.

Потенциал.

Напряжение между какой-нибудь точкой электрической цепи и землей называют потенциалом этой точки.

Очевидно, что потенциал заземленной точки равен нулю. Определим потенциалы других точек, обозначенных на схеме цифрами.

Напряжение генератора равно разности между его ЭДС и потерей напряжения в нем:

Значит, потенциал точки 2, т. е. напряжение точки 2 относительно земли,

Потенциал точки 3 меньше на величину потери напряжения в сопротивлении

Если мы теперь вернемся в точку 1, то должны по-прежнему полагать, что потенциал в ней должен быть меньше, чем в точке 3, как раз на величину напряжения, приходящегося на средний провод:

Потенциал точки 1 равен нулю.

Как раз из этого положения мы исходили при нашем расчете.

Ответ подтверждает правильность наших выкладок.

Из приведенных расчетов мы можем сделать такой вывод:

потенциал точек цепи понижается, если мы идем в направлении тока.

Иными словами, на участках цепи, не содержащих источников ЭДС, разность потенциалов двух точек равна напряжению между этими точками.

Потенциал представляет собой алгебраическую величину, т. е. может иметь не только конкретное значение, но и знак. Поэтому напряжение между отдельными точками электрической цепи может превышать потенциал некоторой точки.

Какую цель преследуют, заземляя одну из точек цепи? На практике к заземлению какой-нибудь точки цепи прибегают с целью уменьшить опасность поражения электрическим током.

При нечаянном прикосновении к какой-нибудь точке электрической установки тело человека окажется под напряжением, равным потенциалу точки соприкосновения. Во многих случаях этот потенциал по своему значению меньше максимального напряжения, действующего в электрической цепи. Более подробно этот вопрос мы рассмотрим в гл. 7, посвященной трехфазному току.

Напряжение на нулевом проводе

Я-то учёл, а вот вы так и не понимаете, что при неразрывном токе бОльшая часть энергии дроссельтранса так и остаётся в зазоре его сердешного, а не предаётся в нагрузку, в то время как в прямоходе оная энерхия представлена дрищавым током хихи. Плюс к этому, доп комм. потери на включение, когда рассасывается выпр. диод, буде оный на p-n переходе, или заряжается емкостина Шоттки, буде оный низковольт, а ежели высоковольт, то поимеете то же рассасывание. Про геморр с демпфером, ограничивающим «пук» на ключике я даже не говорю. Что касаемо жёсткости ВАХ резонансера, то в соседней веточке люди убеждаются в том, что оная ВАХ зело лучшее чем у нерезонансера, при одинакой паразитной индуктивности первичек-вторичек, поскольку резонансер направляет энерхию индухтивности рассеяния в нагрузку. Ну, а буде оная индухтивность шибко мелкая, то ваш усь задолбают индуктивные и кондуктивные помехи, вследствие крутости фронтов тока через ключеги и диодеги. Телевизорам, кои полюбляют обратноходы, на эти помехи посрать, бо оне работают в шибко высокочастотном диапазоне, а нынче так вообще с цифирой. А вот аналоговым усям шумящие питальники категорицки противопоказаны.

About the author

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *