Растение и свет

Спектры в агрофотонике

Введение

Производительность всей системы выращивания определяет количественный критерий оценки – например, полезная масса сухого вещества или объем целевого экстракта из листьев/корней. Для качественной оценки можно анализировать химический состав растений и морфология (отклонение формы и размеров стебля/листьев/плода).

Для большинства культур лучший урожай и качество продукции могут быть получены при обеспечении растениям комфортных условий, где все основные физиологические потребности максимально приближены к естественным уровням.

Таким образом, в большинстве практических задач за эталон для сравнения и оценки результатов искусственного выращивания можно брать растение, выращенное в естественных условиях. Естественные условия для конкретной культуры, как правило, соответствуют климату в регионе его изначального происхождения.

Основы

Рассматривая процесс выращивания растений как замкнутую систему, можно выделить следующие основные факторы, влияющие на результат (см. рис. 1):

— солнечный свет, основной источник энергии
— содержание диоксид углерода (СО2) в воздухе (углерод — основной элемент, используемый для формирования новых клеток)
— вода, в основном, как источник кислорода, входящего в ее состав, необходимого для реакции фотосинтеза
— температура окружающего воздуха.

Рис. 1

Оптимальная температура фотосинтеза для большинства растений средней полосы составляет примерно 20—25°С. Например, для подсолнечника повышение температуры в интервале от 9 до 19°С увеличивает интенсивность фотосинтеза в 2,5 раза.

Так, при фотосинтезе за счет энергии света происходит образование органических веществ (углеводов) при участии хлорофилла. Хлорофилл (от греч. χλωρός, «зелёный» и φύλλον, «лист») — зелёный пигмент, окрашивающий хлоропласты растений в зелёный цвет .

Таким образом, количество света является важным фактором, влияющим на интенсивность роста растений.

Также на протяжении многих лет эволюции этот процесс адаптировался к суточному циклу “день/ночь”. Днем под воздействием света вода разделяется на кислород и водород, а растение запасает энергию и питательные вещества. Ночью, в темноте углекислый газ под воздействием запасенной энергии соединяется с водородом, образуя молекулы углеводов, т.е. происходит собственно рост культуры.

Таким образом, при искусственном выращивании растений важно обеспечить не только высокую освещенность, но и правильную цикличность включения света, чтобы получить лучший результат.

О спектрах

Современные светодиодные технологии позволяют форматировать сложные спектры освещения растений. Рассмотрим, каким образом спектр влияет на процесс роста.

На рис. 2 детально показаны энергетические спектры поглощения базовых пигментов растения.

Рис. 2

Видно, что помимо традиционно упоминаемых пигментов хлорофилла с пиками поглощения в диапазоне 400-500 нм и 650-700 нм, на процессы роста также влияют вспомогательные пигменты из семейства светособирающих фикобилипротеинов.

В некоторых исследованиях спектры поглощения основных пигментов суммируются для формирования “универсального” спектра, форма которого показана на рис. 3.

Рис. 3

Для количественной оценки светового воздействия на растения используется фотосинтетически активная радиация (ФАР). В англоязычной литературе — Photosynthetic Photon Flux (PPF). Поток ФАР/PPF измеряется как число фотонов, излучаемых источником света, которые могут быть поглощены растением при фотосинтезе (диапазон длин волн от 400 до 700 нм).

Величина PPF рассчитывается без учета неравномерного поглощения растением различных энергии различных длин волн. Поэтому в дополнение к PPF иногда используется величина YPF – Yield Photon Flux — т.н. усваиваемый растением поток фотонов. Для расчета YPF используется взвешенное значение ФАР и спектр эффективности фотосинтеза как весовые коэффициенты.

Спектр эффективности фотосинтеза показан на рис. 4.

Рис. 4

Кривая весового коэффициента для фотонов (Photon-weighted) позволяет перевести PPFD в YPF; кривая весового коэффициента энергии (energy-weighted) позволяет сделать то же самое для ФАР, выраженной в ваттах или джоулях.

Рассмотрим подробнее, как влияет на растения излучение в различных участках этого диапазона.

Ультрафиолет C (280 — 315 нм)

Облучение растений таким излучением имеет негативные последствия, может приводить к гибели клеток и обесцвечиванию листьев/плодов.

Ультрафиолет B (315- 380 нм)

Это излучение не имеет видимого эффекта на растения.

Ультрафиолет A (380 — 430 нм)

Передозировка ультрафиолетового излучения может быть опасна для листвы, однако малые дозы излучения поглощаются в процессе цветения и созревания плодов и влияют на цвет и биохимический состав (вкус). Как правило, дозы, получаемые растением под воздействием естественного света, достаточны для поддержания этих процессов.

Синий свет (430-450 нм)

Как показано выше, эта часть спектра хорошо поглощается большинством основных пигментов растения. Эта часть спектра может влиять на морфологию растения: размер и форму куста/листьев, длину стебля. Ряд исследований показывает лучшую эффективность синего цвета на раннем этапе развития растения (вегетативная фаза).
Синий свет способствует открытию устьиц, увеличению количества белка, синтезу хлорофилла, делению и функционированию хлоропластов, сдерживанию роста стебля.

Зеленый свет (500-550 нм)

Значительная часть этого диапазона отражается от листьев, однако нельзя недооценивать роль и этого участка спектра на полноценное развитие растений. Так, например зеленое излучение, отражаясь от верхних листьев растения, обладает лучшей проникающей способностью и способствует более равномерному развитию листьев, на нижних уровнях, находящихся в тени более крупных соседей (рис. 5) .

Рис. 5

Также, управление уровнем зеленого в спектре облучения позволяет контролировать время наступления и длительность фаз прорастания и цветения.

Оранжевый свет (550-610 нм)

С точки зрения рассмотренных выше спектров поглощения хлорофиллов, этот диапазон имеет незначительный уровень отклик. Однако, успешный опыт применения натриевых ламп, излучение которых в основном лежит в этом диапазоне, подтверждает, что фактически растения способны развиваться даже при не оптимальном спектральном составе освещения.

Красный (610-720 нм)

Наиболее эффективный диапазон, с точки зрения количества фотонов, поглощаемых растением в процессе на всех этапах развития.
Красный свет способствует цветению, прорастанию почек, росту стеблевых листьев, опадению листьев, спячке почек, этиоляции и т.д.

Дальний красный (720-1000 нм)

Несмотря на незначительный отклик в спектрах поглощения основных пигментов, дальний красный диапазон выполняет своего рода “сигнальную” функцию – как и в случае с зеленым цветом, корректировка уровня дальнего красного позволяет повлиять на время наступления и длительность фазы цветения и плодоношения.

Инфракрасный (1000 нм и выше)

Все излучение в этом диапазоне конвертируется в тепло, дополнительно влияющее на температуру растения.

Следует помнить, что для естественного солнечного света более 50% энергии излучается именно в инфракрасном диапазоне. Если растение в искусственных условиях облучается только в диапазоне 400-700 нм, то нужно дополнительно предусмотреть запас мощности в системе отопления для поддержания комфортной температуры.

Потребности растения на разных этапах роста

Как было отмечено выше, свет является не только источником энергии, контролирующим фотосинтез. Различные участки спектра воспринимается растением как сигналы, влияющие на многие аспекты роста и развития (прорастания, деэтиоляция) Изменения в развитии растений, связанные со светом являются результатом фотоморфогенеза.

На схеме на рис.6 показаны основные эффекты, стимулируемые различными цветами на протяжении жизненного цикла растения.

Рис. 6

Рассмотрим более подробно влияние света на различных этапах

Синтез хлорофилла

Самое большое количество хлорофилла вырабатывается при синем свете, меньшее – при белом и красном, самое меньшее — при зеленом свете и в тени. При разном свете, соотношение хлорофилла A и B также не одинаковое. Самая большая разница в соотношении А и B при желтом и синем свете. Красный свет способствует большой выработке хлорофилла типа A.

Для светолюбивых растений подходит синий свет, для тенелюбивых растений подходит красный свет.

Цветение

Соотношение между длительностью светового периода и периода темноты называется фотопериодом. Общая протяженность суток – 24 часа, однако в зависимости от разной широты и времени года, протяженность дня и ночи неодинаковая. В зависимости от разных климатических условий и места произрастания, фотопериод у разных растений неодинаков. Цветение, опадение листьев, спячка почек – всё это является реакцией растения на изменение фотопериода.

Растения, которые готовы начать цвести, зацветут при наступлении подходящего фотопериода. Количество дней до начала цветения определяется возрастом растения. Чем старше растение, тем оно быстрее зацветет. Под воздействием фотопериода оказываются листья растений. Чувствительность листьев к изменению фотопериода связана с возрастом растения. Чувствительность старых листьев и молодых листьев неодинаковая. Наиболее чувствительными к изменению фотопериода являются растущие листья.

Накопление питательных веществ и рост растений регулируются излучением в красном и дальним красном диапазоне. Размножение определяется, синим светом. Фитохром, содержащийся в листьях, может принимать сигналы красного света и дальнего света. Растение готовое к цветению, зацветет, если последнее излучение будет красным дальним светом.

На рис. 7 показаны спектры поглощения растений при синтезе хлорофилла, фотосинтезе и фотоморфогенезе.

Рис. 7

Светодиоды

Современные мощные светодиоды, применяемые в искусственном освещении растений, позволяют сформировать монохромное излучение фактически в любой части спектра, рассмотренной выше.
Примеры спектров светодиодов показаны на рис. 8

Рис. 8

Стоит отметить светодиоды с длиной волны 450 нм (“глубокий синий”) и 660 нм (“дальний красный”), как составляющие, совпадающие с пиками поглощения хлорофиллов. Как было отмечено выше, наличие светодиодов пиком излучения в других частях спектра, позволяет дополнительно стимулировать другие участки спектра поглощения. Белые люминофорные светодиоды (серая кривая на рис. 8) имеют в составе своего спектра относительно широкую область излучения люминофора, а также синий пик непоглощенного люминофором излучения синего кристалла.

Комбинация светодиодов различных цветов в одном светильнике с возможностью независимого управления позволяет сформировать фактически любой спектр для конкретной культуры и фазы ее развития.
Примеры спектров, используемых в различных сценариях освещения растений,показаны на рис. 9

Рис. 9

Отдельно стоит рассмотреть спектр облучения, получаемый растением, когда на него воздействует одновременно естественное излучение и излучение системы светодиодной досветки.
Предположим. что в светильнике для досветки используются синие и красные светодиоды в соотношении примерно 1:2 (по уровню энергии), для стимуляции хлорофиллов на стадии вегетативного роста.

Пример такого спектра показан на рис. 10

Рис. 10

В реальности же на листья растений будет также воздействовать спектр солнечной радиации, и суммарный спектр облучения будет выглядеть следующим образом (рис. 11).

Рис. 11

Видно, что в этом случае растение монохромная досветка в сочетании с широкополосным естественны излучением дает спектр, стимулирующий все основные зоны поглощения растений. Результирующий спектр по форме близок к суммарному спектру поглощения всех основных пигментов растения, рассмотренному выше.

Заключение

Подводя итоги данного обзора можно отметить следующее:

Спектральный состав света является важным фактором для продуктивного выращивания культур в искусственных условия, однако, не первичным. Получить прирост урожая за счет оптимизации спектра можно при обеспечении растению достаточного уровня базовых потребностей (температура, вода, CO2, вентиляция). Количество света также является более приоритетным параметром по сравнению с его спектральным составом.

Современные светодиоды позволяют эффективно сформировать излучение в спектральном диапазоне поглощения растений. Причем возможно применение т.н. монохромных светодиодов с различными цветами (длиной волны излучения) и традиционных белых “люминофорных” светодиодов, обеспечивающих равномерное широкополосное излучение.

Наличие в светильнике светодиодов с различными цветами и технологии независимого управления ими позволяет исследовать влияние спектра на эффективность выращивание отдельно взятой культуры в конкретных условиях и выработать оптимальный баланс цветов для лучшей урожайности.

Список литературы

Физиология растений. Н.И. Якушкина. Издательство: «Владос». Год: 2004

Создание эффективных светодиодных фитосветильников. Cакен Юсупов, Михаил Червинский, Екатерина Ильина, Владимир Смолянский. Полупроводниковая светотехника N6’2013

Таблица цветов светодиодов (по длине волны, нм/nm)

Человеческий глаз различает цвета благодаря тому, что они имею разные длины волн (частоты). Длину волны измеряют в нанометрах (nm / нм).

Чувствительность человеческого глаза к излучению (свету) зависит от длины волны. , при этом максимум чувствительности приходится на 555 нм, в зелёной части спектра. Поскольку при удалении от точки максимума чувствительность спадает до нуля постепенно, указать точные границы спектрального диапазона видимого излучения невозможно. Обычно в качестве коротковолновой границы принимают участок 380—400 нм (790—750 ТГц), а в качестве длинноволновой — 760—780 нм (395—385 ТГц) . Электромагнитное излучение с такими длинами волн также называется видимым светом, или просто светом (в узком смысле этого слова).

Часто вместе с цветом, излучаемым светодиодами, указывается длина волны в нм или nm. Например «светодиод синий, 440 nm «. Длина волны позволяет точно подобрать светодиодные изделия одного цвета (если, конечно, она вообще указана и указана корректно).

Человеческим глазом воспринимается электромагнитное излучение с длиной волны от 380 до 760 нм. Его называют видимым светом, или просто светом (в узком смысле этого слова).Длины волн света, видимого или воспринимаемого человеком, лежат в диапазоне 380 — 760 нм.

Цвет Диапазон длин волн, нм / nm
Ультрафиолетовый (не видимый) 10 — 390
Фиолетовый 390 — 450
Синий 450 — 480
Голубой 480 — 510
Зелёный 510 — 555
Желто-зеленый 555 — 575
Жёлтый 575 — 585
Оранжевый 585 — 620
Красный 620 — 760
Инфракрасный (не видимый) 760 — 880

Видимые и невидимые (ультрафиолетовая и инфракрасная) части спектра

Назад

Белый свет для растений

Фотосинтез и свет

Солнечный свет необходим для растений на любой стадии развития. Основными характеристиками света являются его спектральный состав, интенсивность, суточная и сезонная динамика. Недостаток света – сокращение продолжительности светового дня и малая интенсивность освещения – приводят к гибели растения. Свет – единственный источник энергии, обеспечивающий функции и потребности зеленого организма. Для восполнения недостатка солнечного света применяется досветка растений. Наиболее распространенные инструменты – лампы ДНаТ и светодиодные светильники.

Фотосинтез – основа жизни растения. Энергия квантов света преобразует получаемые растением неорганические вещества в органические.

Свет разных длин волн по-разному влияет на интенсивность фотосинтеза. Первые исследования на эту тему были проведены еще в 1836 г. В. Добени. Физик пришел к выводу, что интенсивность фотосинтеза пропорциональна яркости света. Наиболее яркими лучами в то время считались желтые. Выдающийся российский ботаник и физиолог растений К.А. Тимирязев в 1871–1875 гг. установил, что зеленые растения наиболее интенсивно поглощают лучи красной и синей части солнечного спектра, а не желтые, как это считалось ранее. Поглощая красную и синюю часть спектра, хлорофилл отражает зеленые лучи, из-за чего и кажется зеленым. На основании этих данных немецкий физиолог растений Т. В. Энгельман в 1883 г. разработал бактериальный метод изучения ассимиляции углекислого газа растениями, который подтвердил, что разложение углекислого газа, (а, значит, и выделение кислорода) у зеленых растений наблюдается в дополнительных к основной окраске (т.е. зеленой) лучах – красных и синих. Данные, полученные на современном оборудовании, полностью подтверждают результаты, полученные Энгельманом более 130 лет назад.

Рис.1 – Зависимость интенсивности фотосинтеза зеленых растений от длины световой волны

Максимальная интенсивность фотосинтеза – под красным светом, но одного красного спектра недостаточно для гармоничного развития растения. Исследования показывают, что салат, выращенный под красным светом, имеет большую зеленую массу, чем салат, выращенный под комбинированным красно-синим освещением, но в его листьях значительно меньше хлорофилла, полифенолов и антиоксидантов.

ФАР и ее производные

Фотосинтетически активная радиация (ФАР, PPF — Photosynthetic Photon Flux) – та часть доходящей до растений солнечной радиации, которая используется ими для фотосинтеза. Измеряется в мкмоль/Дж. ФАР можно выражать в единицах энергии (интенсивность излучения, Ватт/м2).

Фотосинтетический фотонный поток (PPFD — Photosynthetic Photon Flux Density) — суммарное число фотонов, излучаемых в секунду в диапазоне длин волн от 400 до 700 нм (мкмоль/с).

Значение ФАР не учитывает разницу между разными длинами волн в диапазоне 400 — 700 нм. Кроме того, используется приближение, что волны за пределами этого диапазона имеют нулевую фотосинтетическую активность.

Если известен точный спектр излучения, можно оценить усваиваемый растением поток фотонов (YPF — Yield Photon Flux), представляющий собой ФАР, взвешенную в соответствии с эффективностью фотосинтеза по каждой длине волны. YPF всегда несколько меньше PPF, но позволяет более адекватно оценивать энергетическую эффективность источника света.

Для практических целей достаточно учесть, что зависимость почти линейна и PPF для 3000 К больше YPF примерно на 10%, а для 5000 К — на 15%. Что означает примерно на 5% большую энергетическую ценность для растения теплого света по сравнению с холодным при равной освещенности в люксах.

Эффективность белых светодиодов

Выделенный и очищенный хлорофилл invitro поглощает только красный и синий свет. В живой же клетке пигменты поглощают свет во всем диапазоне 400–700 нм и передают его энергию хлорофиллу.

Несколько фактов о белых светодиодах:

1. В спектре всех белых светодиодов, даже с низкой цветовой температурой и с максимальной цветопередачей, как и у натриевых ламп, очень мало дальнего красного (рис. 2).

Рис. 2. Спектр белого светодиодного (LED 4000K Ra = 90) и натриевого света (HPS)

в сравнении со спектральными функциями восприимчивости растения к синему (B),

красному (Ar) и дальнему красному свету (Afr)

В естественных условиях затененное пологом чужой листвы растение получает больше дальнего красного, чем ближнего, что у светолюбивых растений запускает «синдром избегания тени» — растение тянется вверх. Помидорам, например, на этапе роста (не рассады!) дальний красный необходим, чтобы вытянуться, увеличить рост и общую занимаемую площадь, и, следовательно, урожай в дальнейшем. Под белыми светодиодами и лампами ДНаТ растение чувствует себя как под открытым солнцем и вверх не тянется.

2. Синий свет обеспечивает фототропизм — «слежение за солнцем» (рис. 3).


Рис. 3. Фототропизм — разворот листьев и цветов, вытягивание стеблей

на синюю компоненту белого света

В одном ватте потока белого светодиодного света 2700К фитоактивной синей компоненты вдвое больше, чем в одном ватте натриевого света. Причем доля фитоактивного синего в белом свете растет пропорционально цветовой температуре. Если разместить рядом с растением лампу с интенсивным холодным светом – оно развернет соцветия в сторону лампы.

3. Энергетическая ценность света определяется цветовой температурой и цветопередачей и с точностью 5% может быть определена по формуле:

,
где η – светоотдача ,

Ra – индекс цветопередачи,

CCT – коррелированная цветовая температура

Эта формула может быть использована для расчета освещенности, чтобы при заданной цветопередаче и цветовой температуре обеспечить требуемое значение YPF , например, 300 эфф.мкмоль/с/м2:

3000К

4000К

5000К

Ra=70

25 424

25 641

25 641

Ra=80

23 077

23 810

24 194

Ra=95

20 408

21 583

22 388

Табл.1 – Освещенность (лк), соответствующая 300 эфф.мкмоль/с/м2

Из таблицы видно, что чем меньше цветовая температура и выше индекс цветопередачи, тем ниже необходимая освещенность. Однако, учитывая, что светоотдача светодиодов теплого света несколько ниже, ясно, что подбором цветовой температуры и цветопередачи нельзя энергетически значимо выиграть или проиграть. Можно лишь скорректировать долю фитоактивного синего или красного света.

4. Для практических целей можно использовать правило: световой поток 1000 лм соответствует PPF=15мкмоль/с, а освещенность 1000 лк соответствует PPFD=15мкмоль/с/м2.

Более точно рассчитать PPFD можно по формуле:

PPFD = ,

где k – коэффициент использования светового потока (доля светового потока от осветительной установки, падающая на листья растений)

F – световой поток ,

S – освещаемая площадь

Но k – величина неопределенная, что увеличивает неточность оценки.

Рассмотрим возможные значения для основных типов осветительных систем:

Точечные и линейные источники.

Освещенность, создаваемая точечным источником на локальном участке, падает обратно пропорционально квадрату расстояния между этим участком и источником. Освещенность, создаваемая линейными протяженными источниками над узкими грядками, падает обратно пропорционально расстоянию. То есть, чем больше расстояние от светильника до растения – тем больше света попадает не на листья. Поэтому экономически нецелесообразно использовать для освещения одиночных протяженных грядок светильники, расположенные на высоте более 2м. Применение линз позволяет сузить световой поток светильника и направить на растение большую долю света. Однако сильная зависимость освещенности от расстояния и неопределенность эффекта применения оптики не позволяют определить коэффициент использования k в общем случае.

· Отражающие поверхности.

При использовании закрытых объемов с идеально отражающими стенками весь световой поток попадает на растение. Однако реальный коэффициент отражения зеркальных или белых поверхностей меньше единицы. Доля светового потока, падающего на растение, зависит от отражательных свойств поверхностей и геометрии объема. Определить k в общем случае невозможно.

· Большие массивы источников над большими посадочными площадями

Большие массивы точечных или линейных светильников над большими площадями посадок энергетически выгодны. Квант, излученный в любом направлении, в итоге попадет на какое-либо растение, коэффициент k близок к единице.

Итак, неопределенность доли света, идущего на растения, выше разницы между PPFD и YPFD, и выше погрешности, определяемой неизвестностью цветовой температуры и цветопередачи. Следовательно, для практической оценки интенсивности ФАР целесообразно выбирать достаточно грубую методику оценки освещенности, не учитывающую эти нюансы. И при возможности замерять фактическую освещенность люксметром.

Наиболее адекватная оценка фотосинтетически активного потока белого света достигается, если измерить освещенность E с помощью люксметра и пренебречь влиянием спектральных параметров на энергетическую ценность света для растения. Таким образом, оценивать PPFD белого светодиодного света можно по формуле:

PPFD =

Оценим по приведенным выше формулам применимость офисного светодиодного светильника DS-Office 60 для выращивания салата и его PPFD.

Cветильник потребляет 60Вт, имеет цветовую температуру 5000К, цветопередачу Ra =75 и светоотдачу 110 лм/Вт. При этом его эффективность составит

YPF = (110/100) (1,15 + (3575 − 2360)/5000) эфф. мкмоль/Дж = 1,32 эфф. мкмоль/Дж,

что при умножении на потребляемые 60 Вт составит 79,2 эфф. мкмоль/с.

PPFD = 15×0,110клм/Вт×60Вт/0,36м2=275 мкмоль/с/м2

Эффективность фитосветильника DS-FitoA 75. (75Вт, 5000К, Ra = 95, 102 лм/Вт):

PPFD = 15×0,102клм/Вт×75Вт/0,36м2=319 мкмоль/с/м2

Эффективность ДНаТ

Агропромышленные комплексы консервативны в вопросах освещения теплиц и предпочитают использовать проверенные временем натриевые лампы. Эффективность ДНаТ зависит от мощности и достигает максимума при 600 Вт. YPF при этом составляет 1,5 эфф. мкмоль/Дж. (рис.4). 1000 лм светового потока соответствуют PPF = ~12 мкмоль/с, а освещенность 1000 лк — PPFD = ~12 мкмоль/с/м2, что на 20% меньше аналогичных показателей белого светодиодного света. Эти данные позволяют пересчитывать для ДНаТ люксы в мкмоль/с/м2 и пользоваться опытом освещения растений в промышленных теплицах.

Любой светодиодный светильник, имеющий эффективность 1,5 эфф. мкмоль/Вт, является достойной альтернативой лампы ДНаТ.

Рис. 5. Сравнительные параметры типичного натриевого светильника 600Вт для теплиц, специализированного светодиодного фитосветильника и офисного светильника.

Обычный светильник общего освещения при досветке растений по энергетической эффективности не уступает специализированной натриевой лампе и красно-синему светильнику. По спектрам видно, что красно-синий фитосветильник не узкополосен, его красный горб широк и содержит гораздо больше дальнего красного, чем у белого светодиодного и натриевого светильника. В тех случаях, когда дальний красный необходим, использование такого светильника как единственного или в комбинации с другими вариантами может быть целесообразно.

В настоящее время используется освещение гидропонных ферм и красно-синим, и белым светом (рис. 6-8).

Рис.6 – Ферма Fujitsu по выращиванию зелени

Рис. 7 – Гидропонная установка Toshiba

Рис.8 – Крупнейшая вертикальная ферма Aerofarms, поставляющая свыше 1000 тонн зелени в год

Опубликованных результатов прямых экспериментов по сравнению растений, выращенных под белыми и красно-синими светодиодами, крайне мало.

Основным направлением исследований сегодня является корректирование недостатков узкополосного красно-синего освещения добавлением белого света. Опыты японских исследователей показывают увеличение массы и питательной ценности салата и томатов при добавлении к красному свету белого.

Рис. 9. В каждой паре растение слева выращено под белыми светодиодами, справа — под красно-синими

(из презентации И. Г. Тараканова, кафедра физиологии растений МСХА им. Тимирязева)

Проект Фитекс представил результаты эксперимента по выращиванию различных культур в одинаковых условиях, но под светом различного спектра. Эксперимент показал, что спектр влияет на параметры урожая. Сравнить растения, выросшие под белым светом, под светом ДНаТ и узкополосным розовым вы можете на рис. 10:

Рис. 10 Салат, выращенный в одинаковых условиях, но под светом различного спектра.

Изображения из видеозаписи, опубликованной проектом «Фитэкс» в материалах конференции «Технологии Агрофотоники» в марте 2018г.

По численным показателям первое место занял уникальный небелый спектр под коммерческим названием Rose, который по форме не сильно отличается от испытываемого теплого белого света высокой цветопередачи Ra=90. Еще меньше он отличается от спектра теплого белого света экстравысокой цветопередачи Ra=98. Основное различие в том, что у Rose небольшая доля энергии из центральной части удалена (перераспределена к краям) (рис.11):

Рис.11 – Спектральное распределение для теплого белого света экстравысокой цветопередачи и света Rose

Перераспределение энергии излучения из центра спектра к краям не оказывает влияния на жизненные процессы растений, но свет становится розовым.

Влияние качества света на результат

Реакция растения на свет – интенсивность газообмена, потребления питательных веществ и процессов синтеза – определяется лабораторным путем. Отклики характеризуют не только фотосинтез, но и процессы роста, цветения, синтеза необходимых для вкуса и аромата веществ (рис.12).

Рис.12 — Влияние определенных цветов солнечного спектра

на различных стадиях развития растений

Обычный белый светодиодный свет и специализированный красно-синий при освещении растений обладают примерно одинаковой энергетической эффективностью. Однако широкополосный белый способствует комплексному развитию растения, не ограничивающемся только стимуляцией фотосинтеза. Удаление из полного спектра зеленого для получения фиолетового из белого – не более чем маркетинговый ход.

Красно-синий, розовый светодиодный свет или желтый свет ДНаТ может быть использован в промышленных теплицах. Но если досветка растений происходит при постоянном присутствии человека, необходим белый свет, не раздражающий зрительные и нервные рецепторы.

Выбор типа светодиодного светильника или лампы ДНаТ зависит от особенностей выращивания той или иной культуры, но в любом случае необходимо учитывать:

· Фотосинтетический фотонный поток PPFD и усваиваемый поток фотонов YPF. Теперь эти показатели можно рассчитать самостоятельно, зная световой поток светильника, индекс цветопередачи и цветовую температуру.

Рекомендуемое значение YPF=300 эфф. мкмоль/с/м2

· Степень защиты корпуса светильника от проникновения пыли и влаги. При IP ниже 54 внутрь могут попадать частицы почвы, пыльца, капли воды при поливе, что приведет к выходу светильника из строя.

· Присутствие людей в помещении с работающими лампами. Розовый, фиолетовый свет утомителен для глаз и может вызывать головные боли, желтый свет искажает цвета объектов.

· Лампы ДНаТ нагреваются при работе, их необходимо подвешивать на значительной высоте, чтобы избежать ожогов и пересушивания почвы. Световой поток газоразрядных ламп снижается через 1,5-2 года использования.

Грамотно подобранный свет обеспечивает быстрое и правильное развитие растений –укрепление корневой системы, увеличение зеленой массы, обильное цветение и ускоренное созревание плодов. Технологический прогресс выводит растениеводство на новый уровень – используйте его плоды!

Растения и свет

Не у всех «городских» любителей дачной растительности, есть условия для выращивания рассады на солнечном подоконнике или лоджии. У меня тоже их нет. Насколько важен свет для растений я уже понял после неудавшихся опытов, и захотел разобраться ( как технарь) как именно свет влияет на рост растений. Благо есть некоторая инфа и собственные возможности для экспериментов. Начиная с этой статьи я буду очень подробно и популярно излагать — пересказывать переработанную через собственный опыт, информацию.
надеюсь, что она принесет пользу другим форумчанам. буду отвечать на любые вопросы и вместе мы научимся выращивать рассаду в неблагоприятных условиях
Свет, в совокупности с водой и углекислым газом, в результате фотохимических реакций, обеспечивает синтез (создание) новых растительных клеток. Этот процесс называется фотосинтезом.
В школьных учебниках упоминался всегда именно солнечный свет. Это спектр (смесь) из отдельных цветов, для запоминания которых мы в школе зубрили “каждый охотник желает знать где сидит фазан”
Каждая часть солнечного спектра (каждый цвет) имеет свою длину волны, которая измеряется в нанометрах (нм). Ультрафиолетовая часть лежит ниже 380 нм, фиолетовая – в зоне 380-430 нм, синяя – 430-490 нм, зеленая – 490-570 нм, желтая – 570-600 нм, красная – 600-780 нм, инфракрасная – выше 780 нм.
С увеличением высоты Солнца происходят изменения в соотношении отдельных составляющих спектра. В начальной стадии подъема Солнца над горизонтом в его лучах отсутствует свет от синего до ультрафиолетового. Зато красного много. Чем выше солнце – тем меньше красного и тем больше синего (облака голубые). Т.е. в течение дня происходит изменение спектрального состава солнечного света.
Каждому участку спектра света предназначена своя роль в жизнедеятельности растений:
Лучи с длиной волны 400-510 нм — первый максимум (440нм) поглощения хлорофиллом (синтез клеток)
Лучи с длиной волны 510-610 нм — зона спектра ослабленного фотосинтеза.
Лучи с длиной волны 610-700 нм — зона максимального (660нм)поглощения хлорофиллом и максимального фотосинтеза.( рост клеток, растягивание)
Растения также нуждаются в небольших дозах ультрафиолета и инфракрасных лучах.
После 720нм (дальний красный цвет) фотосинтез не прекращается — пока просто недостаточно изучено поведение растений. Чтобы провести эксперимент нужны светодиоды соответствующей длины волны, но на сегодняшний день их невозможно найти и они вовсе недоступны по цене.
Светокультура — это термин, характеризующий выращивание растений при искусственном освещении. Она складывается из таких факторов: спектр света (определенные длины волн), количество и сила света (моли,люксы, люмены, ватты и так далее, c учетом расстояния от светильников), длительность и периодичность освещения (фотопериод).
При фотосинтезе растений энергия света преобразовывается в химическую энергию — этот процесс происходит во всех зеленых растениях. На самом деле, наука объясняет, что интенсивность любой фотохимической реакции определяется не количеством поглощенной энергии, а числом поглощенных фотонов (квантов) света. При этом научно доказано, что в разных лучах солнечного света величина этих квантов различна.
Эта закономерность определенная- чем меньше длина волны (синий), тем «крупнее» сами кванты и больше их энергия. С ростом длины световой волны (красный) кванты «мельчают», их энергия МЕНЬШЕ, но их ЧИСЛО БОЛЬШЕ!!!
Это следует понимать так, что результат фотосинтеза зависит от количества квантов, а не от их энергии!
Этим и объясняется интенсивность роста зеленой массы под воздействием красного света. При облучении синим светом получаются коренастые растения с короткими междуузлиями, не происходит вытягивания растений, в них накапливается аскорбиновая кислота, повышается холодостойкость и обеспечивается световая закалка.
Я убедился, что ростом растений можно управлять изменяя спектральное соотношение.
В процессе естественного отбора растения приспособились к поглощению именно тех лучей, энергия которых используется в процессе фотосинтеза наиболее эффективно. Это синие лучи с длиной волны 430-440 нанометров и красные 650- 660 нм.
Поэтому, используя способы исскуственного освещения растений , в том числе светодиодные, для подсветки или досветки растений, вместе с ними необходимо знать соответствующую технологию для выращивания отдельных каждой группы или вида, растений . Даже при естественном освещении огородники получают очень разные результаты, потому как имеют разные условия выращивания, знания, опыт, условия и т.д.
Вероятно при исскуственном досвечивании рассады можно уравнять шансы вырастить одинаковую рассаду. Но для этого нужны дополнительные знания. Ведь режим свечения (светокультура), фотопериод, строго связан с вегетационным периодом. И очень сильно зависит от момента подкормки и полива растений. Сколько светить, каким спектром, какая мощность светового потока в каждой фазе жизни растюшки и как часто чередовать день-ночь — все это пока не имеет научных рекомендации.
Наши ученые агрономы, тысячи которых десятки лет проводили исследования и эксперименты, не спешат делиться результатами с простыми огородниками. Так что придется самим.
У всех растений самым основным пигментом, улавливающим свет, является хлорофилл a. В стадии рассады надо стимулировать его полноценное образование.поскольку в любой растюхе уже заложено его минимальное количество, ниже которого оно не в состоянии плодоносить.
Далее, когда растения уже зрелые, энергия света должна уменьшиться и не надо стимулировать образование только хлорофилла a, нужны другие пигменты типа каротиноидов. Они поглощают уже другой диапазон лучей ( какой — не знаю).
Поэтому нам с вами самим приходится экспериментировать, пробовать и учиться на своих ошибках. И обмениваться друг с другом ПРАВИЛЬНОЙ информацией.
В различные периоды (фазы) жизни, отношение растюх к свету различно:
1. для набухания и прорастания семян cовсем не нужен свет.
2. При появлении всходов он необходим даже малотребовательным растениям. Недостаток видимых лучей и слабая общая освещенность в этот период приводят к вытягиванию и даже гибели всходов. Светить нужно пару суток без перерыва!
3. При выращивании рассады, когда идет интенсивный рост листьев и стеблей, все овощные растения предъявляют самые высокие требования к интенсивности солнечной радиации.
4. После ослабления ростовых процессов при максимальной площади листьев снижается потребность в интенсивном освещении.
5. В репродуктивном периоде — при цветении, образовании семян и плодов — растения снова предъявляют повышенные требования к интенсивности солнечной радиации.
Продолжительность освещения, длина дня и ночи оказывают влияние на процессы роста и развития овощных растений.
Продолжительность дня влияет только на рассадный период, до начала плодоношения, потом она уже не имеет значения.
Из собственных наблюдений я заметил, что сложнее всего светокультура огурцов. Они очень сильно тормозятся синим светом, не любят прямого света — им нужен рассеянный, и кроме того лишний красный свет как-то влияет на цветение (?). нужно экспериментально подбирать для огурцов спектр. (мне оказалось проще их сразу в парник посадить). А томаты и перцы любят красный. Томаты очень светолюбивы. . Перцы поменьше. Цветы менее требовательны.
Хочу добавить важное и многократно проверенное: недодал света рассаде — недополучишь урожай. в будущем. Поэтому рассада должна быть упитанная, правильно развитая. «лучше шире,чем выше» . В этот период надо следить за влажностью почвы и воздуха — все важно.
Продолжение следует…

Влияние различных спектров освещения на развитие растений

Закончен опыт в котором проводились наблюдения за воздействием трех спектров освещения на растения: красного, синего и зеленого. Каждым спектром растения освещались отдельно. Для опыта использовали горох и салата из-за их быстрого темпа роста.
Для освещения использовалась самодельная светодиодная планка мощностью 18 Ватт состоящая из шести 3 ваттных светодиодов компании EPISTAR. Наблюдения длились 25 дней, фото отчет представлен ниже.
Первыми в эксперименте были зеленые светодиоды так как считается, что зеленая часть спектра растениями не усваивается и в теории растения под зеленым светом должны были погибнуть или очень плохо расти, от части это подтверждается но не полностью.

Влияние зеленого спектра освещения на развитие растений

Первый день после всходов.

Сложно что то сказать растения выглядят здоровыми.

четвертый день.

Растений заметно вытянулись. Так бывает когда недостаточно освещения.

седьмой день.

Растения продолжают тянутся особенно хорошо это заметно на горохе. Растения слабенькие листовой аппарат не большой.

Десятый день. Тенденция сохраняется растения вытягиваются развиваются плохо.

Тринадцатый день. Горох продолжает тянутся в поисках света. Салат вытянулся так сильно что тонкие стволы уже не держат и начал заваливаться.

Шестнадцатый день. Салат не развивается.

Девятнадцатый день. Горох так же начал заваливаться стебель тонкий и длинный.

Двадцать второй день. Часть салата погибло.

Двадцать пятый день. Горох на 25 день длинный и тонкий. Салат почти весь погиб. Тот что выжил абсолютно не развивается.

Влияние красного спектра освещения на развитие растений

Первый день после всходов. из земли вылезают не спеша выглядят здоровыми.

Четвертый день. Салат наращивает листья немного тянется вверх.

Седьмой день. Горох тянется, Салат начинает заваливаться на бок.

Десятый день. Салат развивает листовой аппарат, но все равно заваливается.

Тринадцатый день. Горох продолжает расти тянется не так сильно как под зелеными светодиодами ствол более крепкий. Салат вытянулся сильно, но сила роста больше чем под зелеными светодиодами .

Шестнадцатый день. горох чувствует себя хорошо. Салат разрастается в длину, но листья не наращивает.

Девятнадцатый день. Горох начал заваливаться. Развитие растения более компактное стол крепче чем при зеленых светодиодах. Салат все так же растягивается.

Двадцать второй день. Салат разросся в длинные макоронены, но не погиб.

Двадцать пятый день. Горох на 25 день чувствует себя хорошо. Салат жив.

Влияние синего спектра освещения на развитие растений

Первый день после всходов. Из земли вылезают не спеша выглядят компактными и здоровыми.

Четвертый день. Салат хорошо наращивает листья совсем не вытягивается.

Седьмой день. Горох компактно развивается наращивает листовой аппарат, Салат выглядит отлично.

Десятый день. Салат развивает листовой аппарат, посажен очень кучно, но все равно не вытягивается. Света достаточно.

Тринадцатый день. Горох продолжает расти, растения компактные междоузлия не вытянуты. Салат не вытягивается, наращивает зеленую массу.

Шестнадцатый день. Горох чувствует себя хорошо. Салат разрастается, очень плотная посадка салат мешает друг другу.

Девятнадцатый день. Горох выглядит хорошо стволы толстые листьев достаточно. Салат прекрасно себя чувствует.

Двадцать второй день. Салат разрастается, наращивает зеленую массу.

Двадцать пятый день. Горох на 25 день чувствует себя хорошо. Салат очень плотно посажен поэтому могло быть и лучше.
Судя по наблюдениям видно, что растениями используется не только красный и синий спектр, но так же и зеленый. Очевидно, что на стадии вегетации растениям нужно больше освещения синего спектра, под ним растения развиваются более гармонично. Но из опыта видно что красную и зеленую составляющую спектра растения так же усваивают и растения хоть и с трудом но могут развиваться под ними какое то время. Это особенно касается зеленой части спектра. Так как считается что зеленый спектр не участвует в фотосинтезе, если бы это было так то растения не прожили 2-3 дней. Поэтому не стоит ограничиваться только синим спектром, оптимально для растений будет использование всего видимого спектра в том числе и зеленого. Конечно зеленого нужно совсем немного и большого вклада в развитие растения он не сделает, но если вы хотите получить максимум от растения то зеленая составляющая спектра не будет лишней.

Просмотров: 20929

Дата: Вторник, 05 Августа 2014

About the author

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *