Ваттметр

Какими приборами измеряют работу электрического тока

> Теория > Работа тока

  • 1 Работа тока
  • 2 Мощность тока
  • 3

В каждой квартире или частном доме устанавливаются счетчики учета электроэнергии, по показаниям которых владельцы на ежемесячной основе оплачивают счета.

Такие контрольные приборы учитывают количество киловатт-часов, потребленные всеми электроприборами и источниками света за определенный промежуток времени.

Многие задаются вопросом о том, что же такое эти «киловатт-часы». Ответ прост: так измеряется работа тока.

Внешний вид квартирного счетчика, который ведет учет работы, что свершил электроток

Каждый человек использует электричество с конкретными целями. Электрический ток выполняет определенную работу, проходя по электроцепи, вследствие которой и функционируют электроприборы, осветительное оборудование и прочее.

Работа электрического тока – это величина, численно равная произведению силы электротока на напряжения на концах участка цепи и на временной промежуток, в течение которого такая работа совершалась. Если любое из этих производных будет изменяться в ту или иную сторону, то и работа, совершенная током, будет уменьшаться или увеличиваться.

Обозначается эта характеристика тока заглавной латинской литерой «А», а измеряется в джоулях или киловатт-часах, сокращенно «Дж» и «кВт*ч», соответственно.

На заметку. Работа тока показывает, сколько электроэнергии превратилось в другие виды энергии (тепловую либо световую) за конкретный период. Для электроэнергии справедлив закон сохранения энергии.

Формула, по которой измеряется работа электрического тока, выглядит следующим образом:

A = U*I*t, где:

  • А – количественный показатель выполненной током работы;
  • U – электронапряжение в цепи;
  • I – сила электротока;
  • t – время, за которое осуществлялась работа электротока.

Также рассчитать работу, какая выполнена током, можно через напряжения и сопротивления в электроцепи по формуле:

A=U2*t/R,

а, имея только данные о силе электротока и сопротивлении в электроцепи, эта величина рассчитывается по формуле:

A=I2*R*t.

В этих формула буквенно обозначаются следующие величины:

  • А – работа электрического тока;
  • U – напряжение в цепи;
  • R – сопротивление на участке цепи;
  • I – сила тока;
  • t – время, за которое осуществлялась работа электротока.

Интересно знать. Счётчики обычно учитывают работу электрического тока в кВт*ч. Эта единица применяется на практике чаще, чем общепринятая единица электрической работы «джоуль», названная в честь знаменитого физика. Дело в том, что Джоуль – единица достаточно мелкая, а 1 кВт*ч = 3600000 Дж.

Для измерения работы тока необходимы такие приспособления, как вольтметр, амперметр, часы. На практике же измерения проводятся сборным прибором – счетчиком по учету электроэнергии.

Электрическая цепь, в которую подключены вольтметр и амперметр для измерения работы электрического тока

Мощность тока

Также немаловажным является такое понятие, как мощность электротока, которая находиться в прямой зависимости от выполненной работы.

Мощность электротока численно равна отношению совершенной работы ко времени, в течение которого эта работа совершалась. Электрическая мощность по своему определению аналогична механической, но обозначается буквой Р.

Из определения мощности следует формула:

Р = А/t, где:

  • Р – мощность электротока;
  • А – выполненная током работа;
  • t – время, за которое осуществлялась работа электротока.

Если заменить в этой формуле числитель на U*I*t, получится такое равенство:

Р = U*I.

Единицей измерения электрической мощности является Ватт (Вт). 1 Вт равен мощности тока силой 1 А с напряжением 1 В. Ватт – довольно небольшая единица, поэтому на практике используют дополнительные:

  • кВт (киловатт);
  • МВт (мегаватт);
  • ГВт (гигаватт).

Мощность электрического тока на опыте определяется с помощью амперметра и вольтметра или специального прибора – ваттметра.

Внешний вид цифрового ваттметра, которым измеряют мощность тока

Производные единицы мощности и работы:

  • 100 ватт называют гектоваттом;
  • 1000 ватт – киловаттом;
  • 1 килограмм-сила-метр в секунду равняется 9,81 ватт;
  • 1 лошадиная сила равняется 75 килограмм-сила-метр в секунду или 736 ватт;
  • 1 джоуль соответствует 1 ватт-секунде;
  • 60 ватт-секунд (джоулей) называют ватт-минутой;
  • 60 ватт-минут называют ватт-часом;
  • 100 ватт-часов называют гектоватт-часом;
  • 1000 ватт-часов называют киловатт-часом.

Знать такие понятия, как работа и мощность электротока, важно всем, так как они повсюду окружают человека: в жировках, на упаковке электроприборов, на счетчиках.

Измерение силы тока в электрических сетях

Сила тока измеряется в амперах и характеризует нагрузку электрических сетей.

Необходимость измерения силы тока возникает для проверки, является ли нагрузка на кабель допустимой. Для монтажа электропроводок используются кабели различных сечений.

Допустимыми токами для кабелей с поливинилхлоридной изоляцией, проложенных по воздуху, являются:

Сечение жилы, мм2 Алюминиевые жилы в количестве Медные жилы в количестве
2 3 4 5 2 3 4 5
1,5 24 21 20 20
2,5 25 21 20 20 33 28 26 26
4,0 34 29 27 27 44 37 34 34
6,0 43 37 34 34 56 49 46 46

При превышении нагрузки кабельной линии допустимой, кабель будет нагреваться, а его изоляция – разрушаться. В итоге это приведет к короткому замыканию, а кабель придется менять на новый.

Поэтому после замены кабелей измеряют ток, протекающий через него при подключении всех электроприборов. Если электропроводка старая, то при подключении к ней дополнительной нагрузки тоже нужно проверить, соответствуют ли токи в ней допустимым значениям.

При максимальной нагрузке электропроводки можно проверить, соответствует ли ток через автоматические выключатели их номинальным данным. При превышении номинального тока автомата его срабатывание от перегрузки неизбежно.

Измерение силы тока требуется для определения режимов работы электроприборов.

Измерение токов нагрузки электродвигателей производится не только для контроля их исправности (токи во всех фазах должны быть одинаковы), но и для определения наличия перегрузки из-за повышенного момента на валу.

Для обогревателя измерение тока покажет, все ли греющие элементы у него исправны. Только измерением тока нагрузки можно выяснить, заработал ли теплый пол.

Мощность электрического тока

Мощность – это работа, совершаемая электрическим током в единицу времени. Измеряется она в Ваттах (Вт, W).

Измерить мощность напрямую теоретически можно, но для этого применяются специальные приборы – ваттметры, измеряющие ток через нагрузку и напряжение на ней. Показания они выдают в Ваттах, но подключить их слишком сложно.

Поэтому они применяются для измерений в заранее определенных узлах электрической сети, подключаясь к ним раз и навсегда.

Щитовой ваттметр для измерения тока

Для бытового применения мощность рассчитывается после измерений потребляемого нагрузкой тока и величины напряжения на ней, которую для простоты можно принять равной 220 в.

Не всегда этот метод дает точные результаты. При наличии в нагрузке индуктивного сопротивления на активную мощность оказывает влияние коэффициент мощности.

Некоторые электроприборы потребляют ток несинусоидальной формы (светодиодные и энергосберегающие лампы, компьютерная и телевизионная техника), который не все измерительные приборы, рассчитанные на измерение переменного напряжения, измеряют правильно.

Приборы для измерения силы тока

Измерить ток можно, используя такие приборы:

Ваттметр постоянного тока 60V 100A LCD дисплей с подсветкой

При покупке на сумму 4000 руб.

Магазин «Мир солнечной энергии» комрании Solbat Company предлагает:

Солнечные батареи влагозащищенные и ударопрочные

Солнечные элементы для сборки солнечных батарей

Аксессуары для сборки солнечных батарей

Светодиодное освещение и оборудование

==============================================================

Ваттметр постоянного тока 60V 100A LCD дисплей с подсветкой — универсальный цифровой измерительный прибор — вольтметр, амперметр, ваттметр, измеряемое напряжение от 0 до 60 вольт, измеряемый ток от 0 до 100 ампер, LCD дисплей с синей подсветкой, встроенный шунт.

==============================================================

Альтернативные названия ваттметра постоянного тока 60V 100A LCD дисплей с подсветкой

универсальный измерительный прибор

комбинированный измерительный прибор

вольтметр, амперметр, ваттметр

измеритель мощности

==============================================================

Описание ваттметра постоянного тока 60V 100A LCD дисплей с подсветкой

Ваттметр постоянного тока 60V 100A LCD дисплей с подсветкой предназначен для измерения напряжения в вольтах, тока в амперах, мощности в ваттах, количество энергии в ватт/часах.

Простота в подключении и отсутствие сложных настроек, делает универсальный цифровой ваттметр 60V 100A LCD дисплей с подсветкой незаменимым при использовании в самодельных лабораторных блоках питания или зарядных устройствах.

Цифровой измерительный прибор 60V 100A LCD дисплей с подсветкой так же применяется для контроля и подсчёта энергии в составе солнечных электростанций.

==============================================================

Это устройство включается между источником питания и нагрузкой и показывает напряжение, ток, мощность, потребление энергии в течение времени (ампер-часы и ватт-часы), а также минимальное напряжение, максимальный ток и пиковую мощность.

Ah — ток, прошедший через устройство с момента запуска (ампер-часы)
Wh — мощность за всё время с момента запуска (ватт-часы)
Ap — максимальный ток, измеренный с момента запуска
Vm — минимальное напряжение с момента запуска
Wp — пиковая мощность с момента запуска.

Само устройство потребляет 0.027 А. как от входной цепи, так и от цепи внешнего питания. При наличии внешнего питания устройство всё равно потребляет от входной цепи 0.003 А.

сторона SOURCE — сторона подключения источника тока (вход)
сторона LOAD — сторона подключения нагрузки (выход)

В солнечных и ветрогенераторных установках рекомендуется включать в цепь на участке контроллер-АКБ, при подаче напряжения свыше 60В устройство сгорает и не подлежит ремонту.

При пропадании напряжения на входе замеренные данные обнуляются. Для сохранения данных в перерывах необходимо подключить внешнее питания (DC от 5 до 60 вольт) на клемму для внешнего питания.

Характеристика:

Измерение силы тока в электрических сетях

Сила тока измеряется в амперах и характеризует нагрузку электрических сетей. Необходимость измерения силы тока возникает для проверки, является ли нагрузка на кабель допустимой. Для монтажа электропроводок используются кабели различных сечений. Допустимыми токами для кабелей с поливинилхлоридной изоляцией, проложенных по воздуху, являются:

Сечение жилы, мм2 Алюминиевые жилы в количестве Медные жилы в количестве
2 3 4 5 2 3 4 5
1,5 24 21 20 20
2,5 25 21 20 20 33 28 26 26
4,0 34 29 27 27 44 37 34 34
6,0 43 37 34 34 56 49 46 46

При превышении нагрузки кабельной линии допустимой, кабель будет нагреваться, а его изоляция – разрушаться. В итоге это приведет к короткому замыканию, а кабель придется менять на новый.

Поэтому после замены кабелей измеряют ток, протекающий через него при подключении всех электроприборов. Если электропроводка старая, то при подключении к ней дополнительной нагрузки тоже нужно проверить, соответствуют ли токи в ней допустимым значениям.

При максимальной нагрузке электропроводки можно проверить, соответствует ли ток через автоматические выключатели их номинальным данным. При превышении номинального тока автомата его срабатывание от перегрузки неизбежно.

Измерение силы тока требуется для определения режимов работы электроприборов. Измерение токов нагрузки электродвигателей производится не только для контроля их исправности (токи во всех фазах должны быть одинаковы), но и для определения наличия перегрузки из-за повышенного момента на валу. Для обогревателя измерение тока покажет, все ли греющие элементы у него исправны. Только измерением тока нагрузки можно выяснить, заработал ли теплый пол.

Методы измерения силы тока

В отличие от измерения напряжения ток измеряется не при параллельном подключении прибора к нагрузке, а при последовательном. Это означает, что измерительный прибор нужно подключить в разрыв любого из проводов питания однофазного потребителя.

При трехфазном питании то же самое нужно проделывать для каждой из фаз. В этом случае ток в нулевом проводе не измеряется, так как при симметричной нагрузке он равен нулю.

Иногда требуется измерить ток в нулевом проводнике, но для группы потребителей отключения нуля для производства измерений невозможно.

Подключение амперметра при измерении тока

Все эти причины приводят к тому, что тестеры и обычные мультиметры редко применяют для измерения силы тока. Их можно использовать только для одиночного потребителя или при измерениях на постоянном токе.

Во всех остальных случаях применяются токоизмерительные клещи или мультиметры, имеющие их в своем составе. Для измерений достаточно нажатием на клавишу разжать клещи, поместить внутрь измерительного контура проводник с измеряемым током и отпустить клавишу. Магнитопровод клещей замкнется и на дисплее (есть клещи со шкалой и стрелкой) отобразится измеряемое значение.

При использовании токоизмерительных клещей нужно внимательно следить, чтобы внутрь магнитопровода попал только проводник, в котором измеряется ток. При попадании внутрь двух проводников и более клещи будут измерять сумму токов в них, причем еще и векторную. Это означает, что поместив внутрь магнитопровода клещей двухжильный кабель с нагрузкой, мы измерим ток, равный нулю. Клещи, как и УЗО, сложат уходящий по фазному проводнику ток в сторону нагрузки и тот же ток с обратным знаком, возвращающийся обратно.

Клещи предназначены только для измерения переменного тока. На постоянном токе попытка их применения приведет к тому, что магнитопровод замкнется с непреодолимой силой. Разжать его руками не получится до тех пор, пока ток не будет отключен.

Классификация электроизмерительных приборов по принципу действия и другим параметрам

Электроизмерительные приборы востребованы и представлены в большом разнообразии. Они применяются в промышленности, транспортной сфере и других областях деятельности. Устройства имеют особую систему обозначения и имеют классификацию по ряду признаков, которую необходимо знать перед применением приборов.

Конструкция и области применения измерительных приборов

Для измерения различных показателей электрического тока используют специальные приборы. Такие устройства разнообразны и классифицируются по нескольким критериям, что позволяет выбрать оптимальный вариант. Все варианты образуют отдельный класс, называющийся электроизмерительные приборы.

Электроизмерительные приборы многообразны, так как необходимы в разных сферах деятельности

Многие варианты приборов обязательно предполагают наличие дисплея, на котором отображается информация. Также в конструкции присутствуют переключатель или кнопка управления прибором. Разъёмы для подключения кабелей, корпус, кнопка включения/отключения тоже являются элементами электроизмерительных приборов.

Дисплей или циферблат всегда присутствуют на приборах измерения электротока

Устройства разного типа применяют в следующих сферах деятельности:

  • медицина;
  • связь и энергетика;
  • научные исследования;
  • бытовые условия;
  • транспортная промышленность;
  • производство любого типа.

Простые или сложные модели приборов позволяют измерить силу тока и другие показатели электроэнергии. Для бытовых условий применяют простой вариант — счётчик электроэнергии, а в промышленности используются более сложные и профессиональные устройства. Таким образом, для электроизмерительных приспособлений каждого типа характерно определённое назначение.

Принцип работы

Большинство электроизмерительных устройств имеют принцип действия, основанный на том, что электроны двигаются по проводнику электроцепи и создают вокруг себя магнитное поле. Стрелка измерительного приспособления перемещается в этом поле, реагируя на его параметры. Чем ниже показатели магнитной зоны, тем меньше отклонения стрелки.

Шкала и стрелка присутствуют на многих приборах и визуализируют особенности электрического тока

При этом все приборы электроизмерительного типа по принципу действия разделяются на следующие виды:

  • магнитоэлектрические, в которых ток пропускается через особую рамку в виде нескольких витков изолированной проволоки. Она размещена между полюсами постоянного магнита, поля их взаимодейству­ют. Рамка и сидящая на одной с ней оси стрелка перемещаются на определённый угол, который пропорционален напряжению или току. Эти приспособления предоставляют точные данные, но без дополнительных устройств используются для определения небольших значений и лишь тока постоянного типа;
  • в электродинамических устройствах магнитное поле, в котором вращается рамка, получается не благодаря постоянному магниту, а с помощью катушки с током. У этих приборов имеются две катушки: неподвижная и подвижная (рамка, жёстко соединённая со стрелкой). Устройства оптимальны для измерения постоянного и непостоянного вариантов тока;
  • работа тепловых моделей осуществляется в результате нагревания током и удлинения проводников. Приборы используются как для постоянного, так и для тока переменного типа;
  • действие электростатических устройств основано на взаимной силе притяжения пластин. Это осуществляется в результате воздействия на них напряжения.

Варианты классификации приборов измерения тока

Все устройства, служащие для определения параметров электрического тока, классифицируются по нескольким признакам. В зависимости от сферы и цели применения подбирают нужный вариант.

Дисплей может быть цифровым или в виде стрелки и шкалы

Виды конструкций

Классификация устройств по типу конструкции предполагает разделение приборов по внешним данным, форме, корпусу, типу дисплея или шкалы. В результате можно выделить несколько вариантов. Одним из них являются щитовые модели, которые представляют собой объёмный щит с кнопками управления и информационным табло.

Цифровые приборы имеют дисплей, отображающий максимально точный результат измерений

Стационарные не подлежат частому перемещению и устанавливаются для контроля параметров энергии в определённой зоне. В отличие от них более мобильны переносные варианты, которые позволяют провести работы в разных местах без необходимости перемещения массивного оборудования.

Классификация по роду измеряемой величины

Все электроизмерительные устройства классифицируются в зависимости от того, какую величину позволяют определить. Это необходимо для всестороннего изучения показателей напряжения, что важно в разных сферах деятельности. В результате классификации по роду определяемой величины можно выделить следующие виды оборудования:

  • амперметры необходимы для измерения тока;
  • омметры служат для определения сопротивлений;
  • ваттметры позволяют узнать мощность;
  • счётчики используют для учёта энергии;
  • частотомеры нужны для определения частот тока переменного типа;
  • угол сдвига фаз измеряют фазометры;
  • узнать малые величины помогают гальванометры;
  • осциллографы определяют часто меняющиеся показатели.

Осциллограф имеет сложную конструкцию, помогающую получить точный результат

Каждый прибор имеет определённое назначение, но многие из них имеют схожий принцип работы. Оборудование может быть разного размера, а производители представляют широкий выбор вариантов.

Разделение по роду тока

Электрический ток может быть нескольких видов и в зависимости от этого подбирают приборы для его измерения. В результате такого подхода можно выделить изделия, предназначенные для измерения и используемые лишь в цепях постоянного тока. Существуют варианты, которые применяют только в цепях с переменным электричеством. Более универсальны модели, подходящие для работы с обеими цепями.

Способы отображения информации

Существует два варианта: цифровые и аналоговые. Под цифровыми устройствами подразумевают приборы, осуществляющие в процессе измерения автоматическое преобразование определяемой величины в дискретную. При этом величина является непрерывной, а полученный результат отображается на цифровом дисплее или регистрируется цифропечатающим оборудованием.

Цифровой дисплей характеризуется чёткостью отображения

Главное преимущество цифровых моделей по сравнению с иными вариантами заключается в том, что полученный результат измерений может быть преобразован математически или физически без повышения погрешности. Одним из представителей такого вида приборов является цифровой вольтметр. Востребованы также амперметры, фазометры, частотомеры.

Аналоговые варианты часто оснащены шкалой и стрелкой. Оборудование характеризуется тем, что при измерении показатель входного сигнала преобразуется в показатель выходного импульса. Результат показывает стрелка, направленная на градуированную шкалу, имеющую определённый предел.

Шкала со стрелкой имеет определённый диапазон измерений

Три блока являются составляющими аналоговой конструкции: блок сравнения, первичный преобразователь, устройство ввода информации. Элементы соединены в систему и взаимосвязаны друг с другом.

Иные варианты систематизации

Электроизмерительные устройства широко используются и классифицируют не только по вышеперечисленным критериям, но и по другим особенностям. Часто разделение осуществляется по следующим параметрам:

  • назначение, то есть оборудование может быть вспомогательным, для измерений, бытового или профессионального применения;
  • система выдачи итогового результата, в зависимости от чего изделия могут быть регистрирующими или с выводом информации на экран;
  • способ измерения. Оборудование может быть использовано для сравнения или оценки показателей.

Обозначения приборов

Производители при маркировке изделий указывают определённые обозначения, которые отражают информацию о принципе действия оборудования. Прописная буква в маркировке указывает на тип работы устройства. Основными являются следующие варианты:

  • «М» или «К» означают, что прибор модернизированный или контактный;
  • «Д» — электродинамическое устройство;
  • «Н» означает, что конструкция самопишущая;
  • «Р» указывает на преобразователи измерительного типа;
  • индукционные устройства обозначаются буквой «И»;
  • «Л» — это логометры.

Разнообразные приборы имеют множество вариантов классификации

При выборе конкретного устройства учитывают обозначения в маркировке. Перед первым использованием нового оборудования требуется его настройка, выполняющаяся согласно инструкции.

Класс точности электроизмерительных устройств

Помимо иных характеристик, важное значение имеет и класс точности, который отражает особенности прибора. Точность зависит от допустимой предельной погрешности, которая может возникнуть в результате конструктивных особенностей конкретного оборудования.

При этом ɣ — приведённая погрешность, ∆x — абсолютная погрешность, а xпр является измеряемым параметром.

: классификация электроизмерительного оборудования

Оборудование для измерения разных показателей электротока представлено множеством моделей и типов. Выбор правильного устройства является залогом точных измерений и эффективной работы приборов.

Какой прибор используется для измерения электрической мощности — Строим и ремонтируем

Каким прибором измеряют мощность? Вопрос достаточно актуальный, так как в настоящее время электрическая сеть имеется повсюду. Без электричества не работает практически ничего.

Неудивительно, что это привело к огромной популярности приборов, измеряющих показатели таких сетей. Важный факт — измерение мощности можно провести только в ваттах.

Однако в некоторых случаях возникает потребность перевода ватта в киловатт. Чаще всего это делается для удобства расчетов.

Общее описание электрических сетей

Мощность — это один из трех основных параметров, который характеризует электрическую сеть. Данный параметр отражает то количество работы, которую выполняет сила тока за одну единицу времени.

Здесь важно понимать, что общая мощность всех включенных приборов в сеть не должна превышать ту, которая подается поставщиком. Если это произойдет, то возможны негативные последствия, начиная с выхода из строя оборудования и заканчивая коротким замыканием и последующим пожаром.

Для того чтобы избежать таких неприятностей, были изобретены измерители мощности, которые называются ваттметрами.

Тут важно понимать, что в цепи постоянного тока измерить этот параметр можно и без использования данного прибора. Для этого используют умножение. Перемножаются значения напряжения и силы тока в цепи. Однако обойтись тем же самым методом в цепи переменного тока не получится. Именно для таких сетей и были изобретены измерительные приборы и инструменты.

Использование аппаратуры

Основными источниками, использующими эти агрегаты, стали мастерские, занимающиеся ремонтом электрических приборов.

Активно используют ваттметры и в электроэнергетической промышленности, а также машиностроении. Еще одной довольно распространенной моделью стали бытовые приборы.

Основными покупателями таких изделий стали любители электроники, владельцы компьютеров или просто люди, желающие экономить на электроэнергии.

Один небольшой факт. В некоторых случаях приходится проводить преобразование ватт в киловатты. Чаще всего это делается в промышленных отраслях, где мощность настолько велика, что, если измерять ее в Вт, то значения будут слишком велики. При переводе единиц измерений есть такое правило: 1000 ВТ — это 1 кВт.

Чаще всего устройства применяются для таких целей, как:

  • определение мощности отдельного агрегата;
  • тестирование всей электрической цепи или ее отдельных частей;
  • контроль работоспособности устройств;
  • учет потребления электроэнергии всеми подключенными устройствами.

Краткое описание типов приборов

Здесь важно начать с того, что, прежде чем начать измерять мощность, обычно измеряют силу тока и напряжение. Основываясь на выбранном способе измерения, последующем преобразовании и выводе полученных данных, различают такие виды измерительных приборов и инструментов, как цифровые и аналоговые.

Аналоговые типы приборов отличаются тем, что они имеют полукруглую шкалу, а также движущуюся стрелку. Они также разделяются на две более мелких группы — самопишущие и показывающие. Эти приборы отражают мощность лишь активного участка цепи. Измерение прибор ведет в ваттах (Вт).

Цифровые измерители мощности (ваттметры) могут использовать для измерения и активной и реактивной мощности.

К тому же у этого аппарата функционал намного шире, так как на его табло выводится показатель не только мощности, а также силы тока, напряжения и расхода энергии во времени.

Еще одно преимущество заключается в том, что вывод всех значений можно производить удаленно, то есть на компьютер оператора.

Суть работы аналоговых приборов

Если говорить об устройствах аналогового типа для измерения мощности, то наиболее точными и часто используемыми стали приспособления электродинамической системы.

Принцип действия этого измерителя мощности основывается на работе двух катушек. Одна из них характеризуется тем, что она не двигается, ее сопротивление мало, как и число витков. А вот обмотка, наоборот, довольно толстая. Второй же экземпляр противоположен первому.

То есть катушка движется, толщина обмотки низкая, а вот число витков довольно велико, из-за чего сопротивление также повышено. Подключение этого прибора осуществляется параллельно нагрузке.

Для того чтобы избежать возникновения короткого замыкания между внутренними катушками устройства, прибор снабжается добавочным сопротивлением.

Суть работы цифровых приспособлений

Принцип действия этих измерителей мощности сложнее, чем у предыдущего типа. Причиной тому стало то, что мощность измеряется не напрямую.

Основа работы устройства лежит в том, что сначала производятся предварительные измерения силы тока и напряжения. Для того чтобы их провести, нужно последовательно нагрузке подключить датчик тока, а параллельно — датчик напряжения.

Выполнены эти агрегаты могут быть на базе термисторов или измерительных трансформаторов.

В этом моменте производятся необходимые расчеты, благодаря которым можно получить значение активной и реактивной мощности.

Итоговые результаты всех измерений выдаются на дисплей этого прибора, а также на дисплей тех устройств, которые подключены к нему. Оптическая мощность не измеряется этими видами приборов.

Бытовые приспособления

На сегодняшний день довольно распространенным и удобным прибором в быту стал ваттметр, при помощи которого можно измерить расход электрической энергии в доме.

Данная модель является портативной версией устройства, при помощи которой измеряется мощность на отдельном участке.

Благодаря этому становится возможным посчитать материальные расходы, которые уйдут на электроэнергию, если оставить работать сеть с такими же параметрами.

Данное приспособление довольно удобно, если необходимо распланировать расход средств, а также поможет провести оптимизацию некоторых участков домашней цепи.

Бытовые ваттметры

Этот агрегат относится к цифровой группе приборов. По своему внешнему виду он сильно напоминает адаптер или же переходник, который обладает дисплеем индикаторного типа. Кроме того, на корпусе расположено несколько кнопок, управляющих работой устройства.

Основное предназначение этого прибора — регистрация и вывод на экран результатов потребления мощности любым бытовым прибором, который подключается к сети через него. Таких параметров довольно много, и это не только потребляемая мощность.

* указаны граничные значения; точный диапазон измерения мощности отличается для разных длин волн (см. спецификацию).

Измеритель оптической мощности (power meter) – прибор, измеряющий мощность оптического сигнала, прошедшего по оптическому волокну. В сочетании с источником излучения используется для измерения потерь в линии.

Прибор способен регистрировать излучение в диапазоне, определяемом спектральной характеристикой используемого фотоприемника, и калибруется на несколько длин волн из этого диапазона.

Измеритель мощности оснащен дисплеем для отображения величины измеренной мощности и другой вспомогательной информации. Также выпускаются модели с возможностью обработки полученных данных при помощи ПК.

Измерители мощности выпускаются в трех конфигурациях:

  • как самостоятельные устройства;
  • в составе комплекта для измерения потерь (источник излучения + измеритель мощности);
  • как часть измерителя потерь (оптического тестера, мультиметра, OLTS) — прибора, представляющего собой источник излучения и измеритель мощности в одном корпусе.

Для присоединения оптического шнура к измерителю мощности необходим адаптер под коннектор определенного типа. Адаптеры могут поставляться вместе с прибором или же продаваться отдельно. Ассортимент адаптеров для измерителей мощности представлен в разделе «Аксессуары», а также на страницах приборов в разделе «Сопутствующие компоненты».

Мощность – важный параметр, характеризующий электрическую цепь. Он отображает объем работы, осуществляемой током за некоторый период времени. Замеряется этот параметр специальными приборами. Для выяснения мощности постоянного тока берутся амперметр и вольтметр, а затем полученные величины умножаются между собой. В случае переменного тока производится непосредственное измерение. Для решения этой задачи используются ваттметры.

Они позволяют:

  1. определять мощность аппаратов;
  2. выяснять режимы работы агрегатов;
  3. тестировать цепи (полностью или частично);
  4. отслеживать расходование электроэнергии;
  5. анализировать параметры мотор-колес и аккумуляторных батарей;
  6. испытывать электроустановки.

Ваттметры по своей конструкции классифицируются на цифровые и аналоговые. Первые замеряют активную и реактивную мощность. Они дополнительно отображают силу тока, напряжение, удельное расходование электроэнергии. Итоги замеров поступают на компьютер. Аналоговые модели (есть 2 разновидности – самопишущие и показывающие) замеряют активную мощность цепного участка. Еще одно их характерное отличие – дисплей, имеющий стрелку и шкалу с градуировкой.

​Как правильно подключить ваттметр в электрическую цепь

По инструкции для ваттметра, у него есть 4 клеммы – по 2 входа и выхода. Одна пара клемм применяется при сборке последовательной (токовой) цепи. Вторая пара клемм подключается после первой и применяется для получения параллельной цепи (напряжения). Начальная точка цепи напряжения подключается перемычкой к начальной точке токовой цепи, который должен быть соединен с зажимом сети. Конечная точка цепи напряжения коммутируется с оставшимся зажимом.

В результате катушка тока получает последовательное соединение с приемниками электроэнергии, а катушка напряжения – аналогичное соединение с дополнительным сопротивлением. Она создает параллельную цепь, располагаемую параллельно приемникам энергии.

Зажимы ваттметра

При смене направленности тока в 1-й катушке меняется направленность вращающего момента и поворота катушки напряжения. А поскольку шкала аналогового прибора зачастую односторонняя, то при неверной направленности тока определить измеряемый параметр не удастся. Поэтому необходимо четко различать зажимы прибора. Коммутируемый с источником питания зажим последовательной катушки называют генераторным. Для него характерно обозначение звездочкой. Идентично называется и обозначается подсоединяемый к проводу от последовательной катушки зажим параллельной цепи.

Поэтому в вопросе, как включается ваттметр, важно обеспечить направленность токов в катушках от генераторных зажимов к остальным. На рисунках представлены 2 корректные схемы включения ваттметра. Первую схему рекомендуется использовать в ситуациях, когда мощностью обмоток прибора допустимо пренебречь. Вторая схема применяется при необходимости высокоточных замеров.

Читайте в нашей предыдущей статье о самостоятельной сборке аккумулятора для гироскутера.

Приборы для измерения расхода электрической энергии.

Как было показано ранее, расход электрической энергии равен произведению мощности потребителя (нагрузки) Р на время его работы W= Pt Существует несколько способов определения количества израсходованной электроэнергии. Наиболее простейших является косвенный способ, для которого необходимо знать мощность всех нагрузок и время их работы. Прямой метод подразумевает использование специальных счетчиков расхода электрической энергии. Наиболее распространены индукционные счетчики, принцип действия которых показан на рисунке 8. Алюминиевый диск 1 счетчика закреплен на вращающейся оси. С двух сторон диска размещены электромагниты 2 и 3. Диск находится в зазоре постоянного магнита 4.
При подключении катушки электромагнита 2 как вольтметра, т. е. параллельно нагрузке, а катушки электромагнита 3 как амперметра (последовательно с нагрузкой) они создают за счет вихревых токов электромагнитную вращающую силу FэM.

Рис. 8. Измерение мощности
Рис. 9. Принцип действия индукционного счетчика:

1 — диск; 2,3 — электромагниты; 4 — постоянный магнит

Из- за особенностей конструкции электромагнитная сила прямо пропорциональна мощности нагрузки Р. Под действием этой силы диск начинает вращаться с ускорением. Постоянный магнит 4 также создает электромагнитную силу, пропорциональную скорости вращения диска, но направленную в обратную сторону по отношению к силе.
По мере увеличения скорости вращения диска увеличивается тормозящая сила от постоянного магнита, при определенном значении которой силы уравновешивают друг друга. Диск начинает вращаться с постоянной частотой п, пропорциональной мощности нагрузки. Произведение скорости (или числа оборотов диска) на время будет соответствовать количеству расходуемой электроэнергии. Для подсчета числа оборотов используют шестеренным счетный механизм.

Рис. 10. Схема подключения счетчика
На рисунке 10 показана стандартная схема подключения однофазного индукционного счетчика расхода электроэнергии. Линейный провод от питающей сети подключен к клемме 1 счетчика, а нулевой провод — к клемме 3.
Провода от нагрузки соединены соответственно с клеммами 2 и 4.
Кроме однофазных существуют и трехфазные индукционные счетчики расхода электроэнергии, позволяющие выполнять измерения непосредственно в трехфазных цепях. Для измерения расхода электроэнергии в одно- и трехфазных сетях начинают применять электронные счетчики, выполненные на базе микропроцессора. Их преимущества: высокая точность измерения, надежность, многофункциональность и возможность передачи информации на компьютер.

Цена: $5.6
Здравствуйте, друзья! Продолжаем тему измерительных приборов и разоблачения недобросовестных производителей.На этот раз я расскажу о приборе, который пригодится тем, кто… Короче, сейчас сами все поймете. Уже по первой фразе Вы догадались, что обзор будет максимально честным и справедливым. Итак, погнали!
Вот этого красавчика зовут Ватт-метр. Точнее, это 4 в 1 — он измеряет напряжение, показывает потребляемый ток, потом пересчитывает все это в Ватты, а в качестве бонуса еще и является счетчиком электроэнергии.
И сразу же еще со старта я хотел бы рассказать о том, как его правильно подключить. Схема, конечно, на нем самом, но лучше все-таки 1 раз увидеть вживую.
Обратите внимание — вход переменки осуществляется во 2 и 3 клеммы, а выход на «продолжение» — в 1 и 4 клеммы. Т.е. если без перехлестов, то выглядеть схема будет вот так:
Теперь давайте разбираться как эта штуковина работает. Вы уже догадались, что я этот приборчик уже встроил в удлинитель. Итак, дадим жару!
Обратите внимание — он уже показывает ток в 0,01А и мощность в 2Вт, хотя к удлинителю ничего не подключено. Странно, да? Но ОК, будем считать это «статистической погрешностью».
И сразу же переходим к тестам на точность. К счастью, у меня есть прибор, который вполне можно использовать в качестве контрольного — мультиметр Uni-T UT136A, я на него уже писал обзор. Уже чувствуете запах палёного?
Давайте воткнем щупы в розетку и посмотрим какая будет разница в напряге.
242В на ватт-метре и 249В на мультиметре. Разница 2%. Не критично, но факт остается фактом — ваттметр занижает фактическое напряжение.
Теперь проверим точность амперметра. Для этого нам потребуется какой-нибудь достаточно мощный приборчик. И у меня такой есть — трехрежимный теплоdентилятор Polaris мощностью целых 2кВт.
Сначала мы запустим режим без нагрева, затем режим легкого нагрева, а потом максимального нагрева. Фотографировать я все это буду таким образом, чтоб было видно и показания ваттметра и показания мультиметра. Но сначала надо переподключить мультиметр. Для этого отключаем один из проводов (любой) т ваттметра и разрыв цепи замыкаем щупами. Т.е. схема должна быть вот такая.
А вот теперь погнали!
Режим обычной вентиляции:
Вот так сюрприз! Ваттметр завысил ток до 150mA, в то время как реальный ток около 120mA. А может мультиметр врет? Давайте переподключим щупы и переведем его в более точный режим — из режима до 10А в режим до 400mA.
А ведь ничего не изменилось — было 120, теперь 122, т.е. то же самое. Значит мультиметр не врет. Может на более мощном токе все изменится?
Разница в 50mA, т.е. погрешность примерно 10Вт. Только теперь наоборот — Ваттметр занижает показатели.
Третий режим — самый мощный.
Да, я не спорю, тепловентилятор при любом раскладе до 2кВт не дотягивает, но посмотрите насколько разнятся показания приборов! Разница составила целых 120mA, т.е. примерно 25Вт. При таких «объемах» не критично, но факт остается фактом — ваттметр супер-точностью не блещет.
Может на чем-то более легком повезет? Например, технический фен, на который я тоже писал обзор.
И снова чуда не произошло — снова ваттметр чуть-чуть занизил ток. Кстати, еще одно доказательство того, что реальная мощность фена завышена. Мы уже знаем, что по заявке этот фен должен хавать 300Вт при напряжении 230В. Однако, даже если верить заниженным показаниям Ватт метра, в сети сейчас 240В (а на деле — почти все 250) и потребляемый ток 1,2А, но все равно до 300Вт он не дотягивает.
Ну и последнее — проверим его до кучи на очен малом токе — на светодиодной лампочке.
Лампочку я взял для теста хорошую, с качественным драйвером.
Итак, смотрим.
А вот это уже реально сюрприз — 80mA на ваттметре и 120mA на мультиметре. А? Ничего себе разница?
Итак, что мы выяснили? Мы выяснили, что ваттметр работает по абсолютно временами непонятной логике. Иногда он завышает показания, а иногда занижает. Тем не менее, я нисколько не жалею о данном приобретении, поскольку:
1) он достался мне бесплатно (посылка опоздала на 2 месяца)
2) если я вижу, что китайчик меня обманывает, то я теперь буду делать замеры на обоих приборах и предоставлять китайцу фотографии с того прибора, который показывает бОльшую разницу.
Например, как в случае вот с такой лампочкой.
Лампочка заявлена как 3 Вт, тёплый свет/ Светит… Не сказал бы, чтоб ярко, но для 3 Вт неплохо. Мерцания у лампочки не наблюдается. Однако, замер показал…
80 (!!!) mA на мультиметре и 20 (!!!) mA на ваттметре. Как это понимать? Как такое возможно? Чему верить? Не знаю как Вы, а я больше поверю мультиметру. А это значит, что я могу открыть спор с китайчиком и сбить цену на эту лампочку. Но это уже совсем другая история.
Анонс. Друзья, я решил теперь анонсировать свои дальнейшие обзоры. Т.е. отныне в конце каждого обзора я буду выкладывать фотографию приобретенного товара, на который в скором времени будет написан обзор. Например, в ближайшие несколько дней мной будет опубликован обзор вот этих замечательных многофункциональных пресс-клещей Knipex.
Жизненная мудрость. Запомните: если девушка говорит «я знаю себе цену» — значит она продается.

About the author

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *